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Remark : we denote x) := (xl(i), ...,x(i)> ; X_j = (xl, oo X1 X1 ...,xd> S (x Xippils ooesX )

d m:n n

Gibbs Sampling Algorithm

- Hypothesis : The conditional P( x; | Xx_;) can be sampled

- Initialisation : x*) = (0,...,0) or random values

- Repeat:
sample xV) = (xl(i), C(Z’)> based on xU ™D = (xl(i_l), ...,xc(li_l))
D) M) =1)
for each position, x, P( x| X 10 Xy d)

. . . Wastiin
sometimes it can converoes \etro olis na q.ambutlon

. ~:cs can be too correlated



3. Markov Chain Monte Carlo
Algorithm : Metropolis-Hastings

Reminder : we want to sample x‘U, ..., x" ~ P (xl,xz, ...,xd)
Remark : we denote x) := (xl(i), ...,xé”) ; X_j = (xl, oo X1 X1 ...,xd> ; Xy = (xm, Xa1s ...,xn)

Metropolis-Hastings Algorithm

- Hypothesis : Let P = P/const where P can be calculated and let () be an we can sample from

- Initialisation : x( = (0,...,0) or random values

- Repeat.:



3. Markov Chain Monte Carlo
Algorithm : Metropolis-Hastings

Reminder : we want to sample x‘U, ..., x" ~ P (xl,xz, ...,xd)

Remark : we denote x) := (xl(’), ...,xé”) ;X = (xl, s X5 Xy ...,xd> DX, = (xm, Xyt 15 ...,xn)

Metropolis-Hastings Algorithm

- Hypothesis : Let P = P/const where P can be calculated and let () be an we can sample from

- Initialisation : x( = (0,...,0) or random values
- Repeat.:

sample a candidate x) ~ Q( x| x=1 ) = (example of auxiliary distribution) A (x"~1, 621



3. Markov Chain Monte Carlo
Algorithm : Metropolis-Hastings

Reminder : we want to sample x‘U, ..., x" ~ P (xl,xz, ...,xd)

Remark : we denote x) := (xl(’), ...,xé”) ;X = (xl, s X5 Xy ...,xd> DX, = (xm, Xyt 15 ...,xn)

Metropolis-Hastings Algorithm

- Hypothesis : Let P = P/const where P can be calculated and let () be an we can sample from

- Initialisation : x( = (0,...,0) or random values
- Repeat.:

sample a candidate x) ~ Q( x® | x=1) = (example of auxiliary distribution) A4 (x"~1, 6*1I)

. O(x"V]x) x P(x") |
with acceptance probability : min|{ 1, — accept x% as an sample from P
O(x® | x=D) x P(x(=D)




3. Markov Chain Monte Carlo
Algorithm : Metropolis-Hastings

Reminder : we want to sample x‘U, ..., x" ~ P (xl,xz, ...,xd)

Remark : we denote x) := (xl(’), ...,xé”) ;X = (xl, s X5 Xy ...,xd> DX, = (xm, Xyt 15 ...,xn)

Metropolis-Hastings Algorithm

- Hypothesis : Let P = P/const where P can be calculated and let () be an we can sample from

- Initialisation : x( = (0,...,0) or random values
- Repeat.:

sample a candidate x) ~ Q( x® | x=1) = (example of auxiliary distribution) A/ (x"~1, 6*I)

. O(xE=D150Y 5 p(xD) |
with acceptance probability : min | 1,— \(‘\ T B accept x'”) as an sample from P
OOl x =) x P(x(-D)




3. Markov Chain Monte Carlo
Algorithm : Metropolis-Hastings

Reminder : we want to sample x(l), ...,x(”) ~ P (xl,xz, ...,xd)

Remark : we denote x) := (xl(’), ...,xc(;)> , X_j = (xl, ERTR AN PR b ...,xd) y Xy = (xm,xm+1, ...,xn)

Metropolis-Hastings Algorithm

- Hypothesis : Let P = P/const where P can be calculated and let () be an auxiliary distribution we can sample from

- Initialisation : x) = (0,...,0) or random values
- Repeat.:
sample a candidate x) ~ Q( x® | x=1) = (example of auxiliary distribution) A/ (x"~1, 6*I)
. (ol P 1
with acceptance probability : min | 1, — — accept x*" as an sample from P
O(xlx =D x P(x(i=1)

rho = 0.9, tau = 0.001 rho=09,tau=1 rho=09,tau=5 rho = 0.9, tau = 100

0.50 1
0.25 1
0.00 1

-0.25
< -0.50
-0.75 1
-1.00 A

-1.25

-1.50 -







3.b. MCMC vs VI

pros and cons

MCMC VI (see lecture 3)

Pros : Pros :

- Useful when the posterior is intractable - Useful when the posterior is intractable

- Asymptotically exact - Suited to large dataset
- Suited to small / medium dataset

Cons:

- Can generates dependant samples from the
distribution




° Applications : notebook






Bayesian statistics Variational Inference

i Deterministic approximation of posterior :
d Latent variable models 3 PP P
P(X|Z) - P(Z)
p(Z|X) =
2 P(X)
Bayesian perspective : i . L
y Persp Likelihood Stljig?ﬁi o Mean Field Approximation !
Hidden variable models :
. Exemple :
P(H | X) — P(X’ 9) — P(Xl 9) P(H) Topic modelling, LDA trained by VI
Box oy PX|0)= ) PX.T=t|0)
Posterior ( ) ( ) Pros :
distribution Evidence '€ Lindexes - Useful when the
— posterior is intractable
@) parameters Hard to compute ! P(X’ Tl 9) P(Xl L, H)P(Tl ‘9) - Suited to large dataset
_ Exemple :
X observations GMM, K-means, PCA/PPCA
Exemple : MAP : argmax P(X|8) - P(0) Pros - :
Naive Bayes classifier, 0 e SR i
Linear regression, ....  Conjugate distribution B el JEI ELAVE L L Markov Chain Monte Carlo

simpler models

- hidden variable
sometimes meaningful

- clustering /
dimensionality reduction

requires math

only local maximum or Sampling techniques for estimate expected values :

A s saddle point

- exact posterior

4

1 M
By RGO 2 — 3 f(x)
s=1

Oral presentations (20 points)
+

Exercice 1 of lecture 1 : 0.5 bonus point

Notebook 1 : 1 bonus point
Notebook 2 : 2 bonus points

f(xs) ~ p(X)  Gibbs sampling / Metropolis-Hastings !

Extensions .
Exemple :

Topic modelling, LDA trained by MCMC

Pros : Cons:
train / inference almost

every probabilistic model

Notebook 3 : 0.5 bonus point
Notebook 4 : 1 bonus point
Notebook 5 : 1 bonus point

asymptotically exact - can generates dependant
suited to small / medium samples from the

dataset distribution




