
Bayesian Machine Learning
May 2022 - François HU 

https://curiousml.github.io/ 

https://curiousml.github.io/


Outline
1. Bayesian statistics 

- define a probabilistic model 
- apply bayesian inference 
- conjugate priors 

2. Latent variable models 
- define latent variable and apply them to simplify probabilistic model 
- cluster data with latent models like GMM 
- train probabilistic models with EM-algorithm 

3. Variational Inference 
- Variational Inference for probabilistic models 
- Introduction to NLP 
- Application on textual data with LDA 

4. Markov Chain Monte Carlo 
- Monte Carlo Estimation 
- MCMC and differences with VI 

5. Extensions and oral presentations

1

2

3

4

5

PREREQUISITE



Monte Carlo estimation1



1. Monte Carlo estimation

Classic estimation methods
Monte Carlo : Estimate an expected value by sampling. A naïve method would be approximating it by its empirical value



1. Monte Carlo estimation

Classic estimation methods
Monte Carlo : Estimate an expected value by sampling. A naïve method would be approximating it by its empirical value

Example :

𝔼[X]

𝔼[h(X)]

 V(X) = 𝔼[(X − 𝔼[X])2]

Let us denote  sample of a r.v.  and x = (x(1), x(2), ⋯, x(n)) X U, V ∼ 𝒰(0,1)

 ℙ(X > 2) = 𝔼[1{X>2}]

  π = 4 × ℙ[U2 + V2 ≤ 1]



1. Monte Carlo estimation

Classic estimation methods
Monte Carlo : Estimate an expected value by sampling. A naïve method would be approximating it by its empirical value

≈

Example :

𝔼[X]

𝔼[h(X)]

 V(X) = 𝔼[(X − 𝔼[X])2]

Let us denote  sample of a r.v.  and x = (x(1), x(2), ⋯, x(n)) X U, V ∼ 𝒰(0,1)

 ℙ(X > 2) = 𝔼[1{X>2}]

x̄(n) =
1
n

n

∑
i=1

x(i)

  π = 4 × ℙ[U2 + V2 ≤ 1]



1. Monte Carlo estimation

Classic estimation methods
Monte Carlo : Estimate an expected value by sampling. A naïve method would be approximating it by its empirical value

≈

≈

Example :

𝔼[X]

𝔼[h(X)]

 V(X) = 𝔼[(X − 𝔼[X])2]

Let us denote  sample of a r.v.  and x = (x(1), x(2), ⋯, x(n)) X U, V ∼ 𝒰(0,1)

 ℙ(X > 2) = 𝔼[1{X>2}]

x̄(n) =
1
n

n

∑
i=1

x(i)

1
n

n

∑
i=1

h(x(i))

  π = 4 × ℙ[U2 + V2 ≤ 1]



1. Monte Carlo estimation

Classic estimation methods
Monte Carlo : Estimate an expected value by sampling. A naïve method would be approximating it by its empirical value

Example :

𝔼[X]

𝔼[h(X)]

 V(X) = 𝔼[(X − 𝔼[X])2]
1
n

n

∑
i=1

(x(i) − x̄(n))2

≈

≈

≈

 ℙ(X > 2) = 𝔼[1{X>2}]

1
n

n

∑
i=1

h(x(i))

x̄(n) =
1
n

n

∑
i=1

x(i)

Let us denote  sample of a r.v.  and x = (x(1), x(2), ⋯, x(n)) X U, V ∼ 𝒰(0,1)

  π = 4 × ℙ[U2 + V2 ≤ 1]



1. Monte Carlo estimation

Classic estimation methods
Monte Carlo : Estimate an expected value by sampling. A naïve method would be approximating it by its empirical value

Example :

𝔼[X]

𝔼[h(X)]

 V(X) = 𝔼[(X − 𝔼[X])2]

 ℙ(X > 2) = 𝔼[1{X>2}]
1
n

n

∑
i=1

1{x(i)>2}

≈

≈

≈

≈

1
n

n

∑
i=1

(x(i) − x̄(n))2

1
n

n

∑
i=1

h(x(i))

x̄(n) =
1
n

n

∑
i=1

x(i)

Let us denote  sample of a r.v.  and x = (x(1), x(2), ⋯, x(n)) X U, V ∼ 𝒰(0,1)

  π = 4 × ℙ[U2 + V2 ≤ 1]



1. Monte Carlo estimation

Classic estimation methods
Monte Carlo : Estimate an expected value by sampling. A naïve method would be approximating it by its empirical value

Example :

𝔼[X]

𝔼[h(X)]

 V(X) = 𝔼[(X − 𝔼[X])2]

  for  
4
n

n

∑
i=1

1{(u(i))2+(v(i))2≤1} u(i), v(i) ∼ 𝒰(0,1)

≈

≈

≈

≈

≈

 ℙ(X > 2) = 𝔼[1{X>2}]

  π = 4 × ℙ[U2 + V2 ≤ 1]

1
n

n

∑
i=1

1{x(i)>2}

1
n

n

∑
i=1

(x(i) − x̄(n))2

1
n

n

∑
i=1

h(x(i))

x̄(n) =
1
n

n

∑
i=1

x(i)

Let us denote  sample of a r.v.  and x = (x(1), x(2), ⋯, x(n)) X U, V ∼ 𝒰(0,1)



1. Monte Carlo estimation

Motivation

Why do we care ?

Monte Carlo : Estimate an expected value by sampling. A naïve method would be approximating it by its empirical value



1. Monte Carlo estimation

Motivation

Why do we care ?

- Estimate a large spectrum of probabilistic models up to a normalization constant

Monte Carlo : Estimate an expected value by sampling. A naïve method would be approximating it by its empirical value



1. Monte Carlo estimation

Motivation

Why do we care ?

Lecture 1 : Bayesian inference 

       

with   

P(y |x, X(train), Y(train)) = ∫θ
P(y |x, θ) ⋅ P(θ |X(train, Y(train)) ⋅ dθ

P(θ |X(train), Y(train)) =
p(Y(train) |X(train), θ) ⋅ P(θ)

constant

- Estimate a large spectrum of probabilistic models up to a normalization constant

Monte Carlo : Estimate an expected value by sampling. A naïve method would be approximating it by its empirical value



1. Monte Carlo estimation

Motivation

Why do we care ?

- Estimate a large spectrum of probabilistic models up to a normalization constant

Monte Carlo : Estimate an expected value by sampling. A naïve method would be approximating it by its empirical value

Lecture 1 : Bayesian inference 

       

with   

P(y |x, X(train), Y(train)) = ∫θ
P(y |x, θ) ⋅ P(θ |X(train, Y(train)) ⋅ dθ

P(θ |X(train), Y(train)) =
p(Y(train) |X(train), θ) ⋅ P(θ)

constant



1. Monte Carlo estimation

Motivation

Why do we care ?

Lecture 1 : Bayesian inference 

             

with   

P(y |x, X(train), Y(train)) = ∫θ
P(y |x, θ) ⋅ P(θ |X(train, Y(train)) ⋅ dθ = 𝔼 P(θ|X(train,Y(train)) P(y |x, θ)

P(θ |X(train), Y(train)) =
p(Y(train) |X(train), θ) ⋅ P(θ)

constant

- Estimate a large spectrum of probabilistic models up to a normalization constant

Monte Carlo : Estimate an expected value by sampling. A naïve method would be approximating it by its empirical value



1. Monte Carlo estimation

Motivation

Why do we care ?

- Estimate a large spectrum of probabilistic models up to a normalization constant

Monte Carlo : Estimate an expected value by sampling. A naïve method would be approximating it by its empirical value

Lecture 1 : Bayesian inference 

             

with   

P(y |x, X(train), Y(train)) = ∫θ
P(y |x, θ) ⋅ P(θ |X(train, Y(train)) ⋅ dθ = 𝔼 P(θ|X(train,Y(train)) P(y |x, θ)

P(θ |X(train), Y(train)) =
p(Y(train) |X(train), θ) ⋅ P(θ)

constant



1. Monte Carlo estimation

Motivation

Why do we care ?

- Estimate a large spectrum of probabilistic models up to a normalization constant

easy : model output + prior fixed by us

difficult : as always …

Monte Carlo : Estimate an expected value by sampling. A naïve method would be approximating it by its empirical value

Lecture 1 : Bayesian inference 

             

with   

P(y |x, X(train), Y(train)) = ∫θ
P(y |x, θ) ⋅ P(θ |X(train, Y(train)) ⋅ dθ = 𝔼 P(θ|X(train,Y(train)) P(y |x, θ)

P(θ |X(train), Y(train)) =
p(Y(train) |X(train), θ) ⋅ P(θ)

constant



1. Monte Carlo estimation

Motivation

Why do we care ?

Lecture 1 : Bayesian inference 

             

with   

P(y |x, X(train), Y(train)) = ∫θ
P(y |x, θ) ⋅ P(θ |X(train, Y(train)) ⋅ dθ = 𝔼 P(θ|X(train,Y(train)) P(y |x, θ)

P(θ |X(train), Y(train)) =
p(Y(train) |X(train), θ) ⋅ P(θ)

constant

- Estimate a large spectrum of probabilistic models up to a normalization constant

easy : model output + prior fixed by us

difficult : as always …

                   if we can sample  P(y |x, X(train), Y(train)) ≈
1
n

n

∑
i=1

P(y |x, θi) θ1, …, θn ∼ P(θ |X(train), Y(train))

Monte Carlo : Estimate an expected value by sampling. A naïve method would be approximating it by its empirical value



1. Monte Carlo estimation

Motivation

Why do we care ?

- Estimate a large spectrum of probabilistic models up to a normalization constant

easy : model output + prior fixed by us

difficult : as always …

Monte Carlo : Estimate an expected value by sampling. A naïve method would be approximating it by its empirical value

Lecture 2 (and 3) : M-step of EM-algorithm 

       if we can sample max
θ

𝔼T [log P(X, T |θ)] ≈
1
n

n

∑
i=1

log P(X, Ti |θ) T1, …, Tn ∼ T

Lecture 1 : Bayesian inference 

             

with   

P(y |x, X(train), Y(train)) = ∫θ
P(y |x, θ) ⋅ P(θ |X(train, Y(train)) ⋅ dθ = 𝔼 P(θ|X(train,Y(train)) P(y |x, θ)

P(θ |X(train), Y(train)) =
p(Y(train) |X(train), θ) ⋅ P(θ)

constant

                   if we can sample  P(y |x, X(train), Y(train)) ≈
1
n

n

∑
i=1

P(y |x, θi) θ1, …, θn ∼ P(θ |X(train), Y(train))



1. Monte Carlo estimation

Motivation

Why do we care ?

- Estimate a large spectrum of probabilistic models up to a normalization constant

easy : model output + prior fixed by us

difficult : as always …

Monte Carlo : Estimate an expected value by sampling. A naïve method would be approximating it by its empirical value

Lecture 2 (and 3) : M-step of EM-algorithm 

       if we can sample max
θ

𝔼T [log P(X, T |θ)] ≈
1
n

n

∑
i=1

log P(X, Ti |θ) T1, …, Tn ∼ T

Lecture 1 : Bayesian inference 

             

with   

P(y |x, X(train), Y(train)) = ∫θ
P(y |x, θ) ⋅ P(θ |X(train, Y(train)) ⋅ dθ = 𝔼 P(θ|X(train,Y(train)) P(y |x, θ)

P(θ |X(train), Y(train)) =
p(Y(train) |X(train), θ) ⋅ P(θ)

constant

                   if we can sample  P(y |x, X(train), Y(train)) ≈
1
n

n

∑
i=1

P(y |x, θi) θ1, …, θn ∼ P(θ |X(train), Y(train))



1. Monte Carlo estimation

Motivation

Why do we care ?

- Estimate a large spectrum of probabilistic models up to a normalization constant

easy : model output + prior fixed by us

difficult : as always …

Monte Carlo : Estimate an expected value by sampling. A naïve method would be approximating it by its empirical value

Lecture 2 (and 3) : M-step of EM-algorithm 

       if we can sample max
θ

𝔼T [log P(X, T |θ)] ≈
1
n

n

∑
i=1

log P(X, Ti |θ) T1, …, Tn ∼ T

Lecture 1 : Bayesian inference 

             

with   

P(y |x, X(train), Y(train)) = ∫θ
P(y |x, θ) ⋅ P(θ |X(train, Y(train)) ⋅ dθ = 𝔼 P(θ|X(train,Y(train)) P(y |x, θ)

P(θ |X(train), Y(train)) =
p(Y(train) |X(train), θ) ⋅ P(θ)

constant

                   if we can sample  P(y |x, X(train), Y(train)) ≈
1
n

n

∑
i=1

P(y |x, θi) θ1, …, θn ∼ P(θ |X(train), Y(train))

Yes with usual simulations or M
CMC



1. Monte Carlo estimation

Usual simulations : the power of uniform distribution

Starting point : we know how to simulate a pseudo-random uniform  

For « usual » distributions : both discrete and continuous r.v. can be sampled thanks to the uniform distribution

U ∼ 𝒰(0,1)

In practice (with python) we can easily sample them (via scipy and numpy for example)



1. Monte Carlo estimation

Usual simulations : the power of uniform distribution

Starting point : we know how to simulate a pseudo-random uniform  

For « usual » distributions : both discrete and continuous r.v. can be sampled thanks to the uniform distribution

U ∼ 𝒰(0,1)

In practice (with python) we can easily sample them (via scipy and numpy for example)

Otherwise : if there isn’t an analytical way to sample it then

Rejection sampling algorithm. 

Assumption : we can compute distribution’s pdf  and sample from an auxiliary distribution  s.t. P Q P ≤ const × Q



1. Monte Carlo estimation

Usual simulations : the power of uniform distribution

Starting point : we know how to simulate a pseudo-random uniform  

For « usual » distributions : both discrete and continuous r.v. can be sampled thanks to the uniform distribution

U ∼ 𝒰(0,1)

In practice (with python) we can easily sample them (via scipy and numpy for example)

Otherwise : if there isn’t an analytical way to sample it then


Algorithm

1. generate sample   (auxiliary distribution)

2. generate sample  

3. if  then accept  else reject.

xi ∼ Q
u ∼ 𝒰( 0, const ⋅ Q(xi) )

u ≤ P(xi) xi

Rejection sampling algorithm. 

Assumption : we can compute distribution’s pdf  and sample from an auxiliary distribution  s.t. P Q P ≤ const × Q



1. Monte Carlo estimation

Usual simulations : the power of uniform distribution

X1

Otherwise : if there isn’t an analytical way to sample it then


Algorithm

1. generate sample   (auxiliary distribution)

2. generate sample  

3. if  then accept  else reject.

xi ∼ Q
u ∼ 𝒰( 0, const ⋅ Q(xi) )

u ≤ P(xi) xi

Rejection sampling algorithm. 

Assumption : we can compute distribution’s pdf  and sample from an auxiliary distribution  s.t. P Q P ≤ const × Q

Starting point : we know how to simulate a pseudo-random uniform  

For « usual » distributions : both discrete and continuous r.v. can be sampled thanks to the uniform distribution

U ∼ 𝒰(0,1)

In practice (with python) we can easily sample them (via scipy and numpy for example)



1. Monte Carlo estimation

Usual simulations : the power of uniform distribution

X1

Otherwise : if there isn’t an analytical way to sample it then


Algorithm

1. generate sample   (auxiliary distribution)

2. generate sample  

3. if  then accept  else reject.

xi ∼ Q
u ∼ 𝒰( 0, const ⋅ Q(xi) )

u ≤ P(xi) xi

Rejection sampling algorithm. 

Assumption : we can compute distribution’s pdf  and sample from an auxiliary distribution  s.t. P Q P ≤ const × Q

Starting point : we know how to simulate a pseudo-random uniform  

For « usual » distributions : both discrete and continuous r.v. can be sampled thanks to the uniform distribution

U ∼ 𝒰(0,1)

In practice (with python) we can easily sample them (via scipy and numpy for example)



1. Monte Carlo estimation

Usual simulations : the power of uniform distribution

X1

Otherwise : if there isn’t an analytical way to sample it then


Algorithm

1. generate sample   (auxiliary distribution)

2. generate sample  

3. if  then accept  else reject.

xi ∼ Q
u ∼ 𝒰( 0, const ⋅ Q(xi) )

u ≤ P(xi) xi

Rejection sampling algorithm. 

Assumption : we can compute distribution’s pdf  and sample from an auxiliary distribution  s.t. P Q P ≤ const × Q

Starting point : we know how to simulate a pseudo-random uniform  

For « usual » distributions : both discrete and continuous r.v. can be sampled thanks to the uniform distribution

U ∼ 𝒰(0,1)

In practice (with python) we can easily sample them (via scipy and numpy for example)



1. Monte Carlo estimation

Usual simulations : the power of uniform distribution

X2X1

Otherwise : if there isn’t an analytical way to sample it then


Algorithm

1. generate sample   (auxiliary distribution)

2. generate sample  

3. if  then accept  else reject.

xi ∼ Q
u ∼ 𝒰( 0, const ⋅ Q(xi) )

u ≤ P(xi) xi

Rejection sampling algorithm. 

Assumption : we can compute distribution’s pdf  and sample from an auxiliary distribution  s.t. P Q P ≤ const × Q

Starting point : we know how to simulate a pseudo-random uniform  

For « usual » distributions : both discrete and continuous r.v. can be sampled thanks to the uniform distribution

U ∼ 𝒰(0,1)

In practice (with python) we can easily sample them (via scipy and numpy for example)



1. Monte Carlo estimation

Usual simulations : the power of uniform distribution

X1 X2

Otherwise : if there isn’t an analytical way to sample it then


Algorithm

1. generate sample   (auxiliary distribution)

2. generate sample  

3. if  then accept  else reject.

xi ∼ Q
u ∼ 𝒰( 0, const ⋅ Q(xi) )

u ≤ P(xi) xi

Rejection sampling algorithm. 

Assumption : we can compute distribution’s pdf  and sample from an auxiliary distribution  s.t. P Q P ≤ const × Q

Starting point : we know how to simulate a pseudo-random uniform  

For « usual » distributions : both discrete and continuous r.v. can be sampled thanks to the uniform distribution

U ∼ 𝒰(0,1)

In practice (with python) we can easily sample them (via scipy and numpy for example)



1. Monte Carlo estimation

Usual simulations : the power of uniform distribution

X1 X2

Otherwise : if there isn’t an analytical way to sample it then


Algorithm

1. generate sample   (auxiliary distribution)

2. generate sample  

3. if  then accept  else reject.

xi ∼ Q
u ∼ 𝒰( 0, const ⋅ Q(xi) )

u ≤ P(xi) xi

Rejection sampling algorithm. 

Assumption : we can compute distribution’s pdf  and sample from an auxiliary distribution  s.t. P Q P ≤ const × Q

Starting point : we know how to simulate a pseudo-random uniform  

For « usual » distributions : both discrete and continuous r.v. can be sampled thanks to the uniform distribution

U ∼ 𝒰(0,1)

In practice (with python) we can easily sample them (via scipy and numpy for example)



1. Monte Carlo estimation

Usual simulations : the power of uniform distribution

X2 …X1 X2 XnXp …

Otherwise : if there isn’t an analytical way to sample it then


Algorithm

1. generate sample   (auxiliary distribution)

2. generate sample  

3. if  then accept  else reject.

xi ∼ Q
u ∼ 𝒰( 0, const ⋅ Q(xi) )

u ≤ P(xi) xi

Rejection sampling algorithm. 

Assumption : we can compute distribution’s pdf  and sample from an auxiliary distribution  s.t. P Q P ≤ const × Q

Starting point : we know how to simulate a pseudo-random uniform  

For « usual » distributions : both discrete and continuous r.v. can be sampled thanks to the uniform distribution

U ∼ 𝒰(0,1)

In practice (with python) we can easily sample them (via scipy and numpy for example)



1. Monte Carlo estimation

Usual simulations : the power of uniform distribution

X1 X2 …X1 Xn

Otherwise : if there isn’t an analytical way to sample it then


Algorithm

1. generate sample   (auxiliary distribution)

2. generate sample  

3. if  then accept  else reject.

xi ∼ Q
u ∼ 𝒰( 0, const ⋅ Q(xi) )

u ≤ P(xi) xi

Rejection sampling algorithm. 

Assumption : we can compute distribution’s pdf  and sample from an auxiliary distribution  s.t. P Q P ≤ const × Q

Starting point : we know how to simulate a pseudo-random uniform  

For « usual » distributions : both discrete and continuous r.v. can be sampled thanks to the uniform distribution

U ∼ 𝒰(0,1)

In practice (with python) we can easily sample them (via scipy and numpy for example)



1. Monte Carlo estimation

Usual simulations : the power of uniform distribution

works for most distribution

if the « gaps » between  and  are too large, 

we reject most of the sample

P Q

X1X1

X2

…

Xn

Otherwise : if there isn’t an analytical way to sample it then


Algorithm

1. generate sample   (auxiliary distribution)

2. generate sample  

3. if  then accept  else reject.

xi ∼ Q
u ∼ 𝒰( 0, const ⋅ Q(xi) )

u ≤ P(xi) xi

Rejection sampling algorithm. 

Assumption : we can compute distribution’s pdf  and sample from an auxiliary distribution  s.t. P Q P ≤ const × Q

Starting point : we know how to simulate a pseudo-random uniform  

For « usual » distributions : both discrete and continuous r.v. can be sampled thanks to the uniform distribution

U ∼ 𝒰(0,1)

In practice (with python) we can easily sample them (via scipy and numpy for example)



1. Monte Carlo estimation

Usual simulations : the power of uniform distribution

works for most distribution

if the « gaps » between  and  are too large, 

we reject most of the sample

P Q
use MCMC

X1X1

X2

…

Xn

Otherwise : if there isn’t an analytical way to sample it then


Algorithm

1. generate sample   (auxiliary distribution)

2. generate sample  

3. if  then accept  else reject.

xi ∼ Q
u ∼ 𝒰( 0, const ⋅ Q(xi) )

u ≤ P(xi) xi

Rejection sampling algorithm. 

Assumption : we can compute distribution’s pdf  and sample from an auxiliary distribution  s.t. P Q P ≤ const × Q

Starting point : we know how to simulate a pseudo-random uniform  

For « usual » distributions : both discrete and continuous r.v. can be sampled thanks to the uniform distribution

U ∼ 𝒰(0,1)

In practice (with python) we can easily sample them (via scipy and numpy for example)



Markov Chain Monte Carlo : Definition2



2. Markov Chain Monte Carlo

Definition : Monte Carlo sampling

X1 X2 Xn… where  i.i.dX1, …, Xn ∼ P

Monte Carlo sampling : generates independent samples from the probability distribution in order to estimate an expected value



2. Markov Chain Monte Carlo

Definition : Markov Chain

Markov Chain : generates a sequence of r.v. where the next variable is probabilistically dependent upon the current variable.

 is called stationary if        P P(x′￼) = ∑
x∈supp(X)

T(x, x′￼) ⋅ P(x)
 the transition probability of being in 

the state  given the current state 

T(x, x′￼

x′￼ x

X1 X2 Xn… where  i.i.dX1, …, Xn ∼ P

Monte Carlo sampling : generates independent samples from the probability distribution in order to estimate an expected value



2. Markov Chain Monte Carlo

Definition : Markov Chain Monte Carlo

Markov Chain : generates a sequence of r.v. where the next variable is probabilistically dependent upon the current variable.

 is called stationary if        P P(x′￼) = ∑
x∈supp(X)

T(x, x′￼) ⋅ P(x)
 the transition probability of being in 

the state  given the current state 

T(x, x′￼

x′￼ x

X1 X2 Xn… where  i.i.dX1, …, Xn ∼ P

Monte Carlo sampling : generates independent samples from the probability distribution in order to estimate an expected value

Markov Chain Monte Carlo sampling : a sequence of Monte Carlo Samples where the next sample is dependent upon the current sample

X1 X2 Xb… Xn+bXb+1 …
T T T T T

 with some possible correlationsXb+1, …, Xb+n ∼ PBurn-in samples

T



2. Markov Chain Monte Carlo

Definition : Markov Chain Monte Carlo

Markov Chain : generates a sequence of r.v. where the next variable is probabilistically dependent upon the current variable.

 is called stationary if        P P(x′￼) = ∑
x∈supp(X)

T(x, x′￼) ⋅ P(x)
 the transition probability of being in 

the state  given the current state 

T(x, x′￼

x′￼ x

X1 X2 Xn… where  i.i.dX1, …, Xn ∼ P

Monte Carlo sampling : generates independent samples from the probability distribution in order to estimate an expected value

Markov Chain Monte Carlo sampling : a sequence of Monte Carlo Samples where the next sample is dependent upon the current sample

X1 X2 Xb… Xn+bXb+1 …
T T T T T

 with some possible correlationsXb+1, …, Xb+n ∼ PBurn-in samples

T

Objective : Build a Markov Chain that converges to the target distribution  no matter the starting pointP



2. Markov Chain Monte Carlo

Definition : Markov Chain Monte Carlo

Objective : Build a Markov Chain that converges to the target distribution  no matter the starting pointP

Markov Chain : generates a sequence of r.v. where the next variable is probabilistically dependent upon the current variable.

 is called stationary if        P P(x′￼) = ∑
x∈supp(X)

T(x, x′￼) ⋅ P(x)
 the transition probability of being in 

the state  given the current state 

T(x, x′￼

x′￼ x

X1 X2 Xn… where  i.i.dX1, …, Xn ∼ P

Monte Carlo sampling : generates independent samples from the probability distribution in order to estimate an expected value

Markov Chain Monte Carlo sampling : a sequence of Monte Carlo Samples where the next sample is dependent upon the current sample

X1 X2 Xb… Xn+bXb+1 …
T T T T T

 with some possible correlationsXb+1, …, Xb+n ∼ PBurn-in samples

T

Theorem : if  for all  then there exists an unique stationary and convergent distributionT(x, x′￼) > 0 x, x′￼



Markov Chain Monte Carlo : Algorithms3



3. Markov Chain Monte Carlo

Algorithm : Gibbs sampling
Reminder : we want to sample x(1), …, x(n) ∼ P (x1, x2, …, xd)
Remark : we denote  ;   ;  x(i) := (x(i)

1 , …, x(i)
d ) x−j = (x1, …, xj−1, xj+1, …, xd) xm:n = (xm, xm+1, …, xn)

- Hypothesis : The conditional  can be sampled


- Initialisation :    or random values


- Repeat : 


sample  based on 


        


        


…


        


P( xj | x−j )

x(0) = (0,…,0)

x(i) = (x(i)
1 , …, x(i)

d ) x(i−1) = (x(i−1)
1 , …, x(i−1)

d )
x(i)

1 ∼ P( x1 | x(i−1)
2 , x(i−1)

3 , …, x(i−1)
d )

x(i)
2 ∼ P( x2 | x(i)

1 , x(i−1)
3 , …, x(i−1)

d )

x(i)
d ∼ P( xd | x(i)

2 , x(i)
3 , …, x(i−1)

d )

Gibbs Sampling Algorithm



Reminder : we want to sample x(1), …, x(n) ∼ P (x1, x2, …, xd)
Remark : we denote  ;   ;  x(i) := (x(i)

1 , …, x(i)
d ) x−j = (x1, …, xj−1, xj+1, …, xd) xm:n = (xm, xm+1, …, xn)

- Hypothesis : The conditional  can be sampled


- Initialisation :    or random values


- Repeat : 


sample  based on 


        


        


…


        


P( xj | x−j )

x(0) = (0,…,0)

x(i) = (x(i)
1 , …, x(i)

d ) x(i−1) = (x(i−1)
1 , …, x(i−1)

d )
x(i)

1 ∼ P( x1 | x(i−1)
2 , x(i−1)

3 , …, x(i−1)
d )

x(i)
2 ∼ P( x2 | x(i)

1 , x(i−1)
3 , …, x(i−1)

d )

x(i)
d ∼ P( xd | x(i)

2 , x(i)
3 , …, x(i−1)

d )

Gibbs Sampling Algorithm

3. Markov Chain Monte Carlo

Algorithm : Gibbs sampling



Reminder : we want to sample x(1), …, x(n) ∼ P (x1, x2, …, xd)
Remark : we denote  ;   ;  x(i) := (x(i)

1 , …, x(i)
d ) x−j = (x1, …, xj−1, xj+1, …, xd) xm:n = (xm, xm+1, …, xn)

- Hypothesis : The conditional  can be sampled


- Initialisation :    or random values


- Repeat : 


sample  based on 


        


        


…


        


P( xj | x−j )

x(0) = (0,…,0)

x(i) = (x(i)
1 , …, x(i)

d ) x(i−1) = (x(i−1)
1 , …, x(i−1)

d )
x(i)

1 ∼ P( x1 | x(i−1)
2 , x(i−1)

3 , …, x(i−1)
d )

x(i)
2 ∼ P( x2 | x(i)

1 , x(i−1)
3 , …, x(i−1)

d )

x(i)
d ∼ P( xd | x(i)

2 , x(i)
3 , …, x(i−1)

d )

Gibbs Sampling Algorithm

3. Markov Chain Monte Carlo

Algorithm : Gibbs sampling



Reminder : we want to sample x(1), …, x(n) ∼ P (x1, x2, …, xd)
Remark : we denote  ;   ;  x(i) := (x(i)

1 , …, x(i)
d ) x−j = (x1, …, xj−1, xj+1, …, xd) xm:n = (xm, xm+1, …, xn)

- Hypothesis : The conditional  can be sampled


- Initialisation :    or random values


- Repeat : 


sample  based on 


        


        


…


        


P( xj | x−j )

x(0) = (0,…,0)

x(i) = (x(i)
1 , …, x(i)

d ) x(i−1) = (x(i−1)
1 , …, x(i−1)

d )
x(i)

1 ∼ P( x1 | x(i−1)
2 , x(i−1)

3 , …, x(i−1)
d )

x(i)
2 ∼ P( x2 | x(i)

1 , x(i−1)
3 , …, x(i−1)

d )

x(i)
d ∼ P( xd | x(i)

2 , x(i)
3 , …, x(i−1)

d )

Gibbs Sampling Algorithm

3. Markov Chain Monte Carlo

Algorithm : Gibbs sampling



Reminder : we want to sample x(1), …, x(n) ∼ P (x1, x2, …, xd)
Remark : we denote  ;   ;  x(i) := (x(i)

1 , …, x(i)
d ) x−j = (x1, …, xj−1, xj+1, …, xd) xm:n = (xm, xm+1, …, xn)

- Hypothesis : The conditional  can be sampled


- Initialisation :    or random values


- Repeat : 


sample  based on 


for each position,        


        


…


        


P( xj | x−j )

x(0) = (0,…,0)

x(i) = (x(i)
1 , …, x(i)

d ) x(i−1) = (x(i−1)
1 , …, x(i−1)

d )
x(i)

k ∼ P( x1 | x(i)
1:k−1, x(i−1)

k+1:d )

x(i)
2 ∼ P( x2 | x(i)

1 , x(i−1)
3 , …, x(i−1)

d )

x(i)
d ∼ P( xd | x(i)

2 , x(i)
3 , …, x(i−1)

d )

Gibbs Sampling Algorithm

3. Markov Chain Monte Carlo

Algorithm : Gibbs sampling



Reminder : we want to sample x(1), …, x(n) ∼ P (x1, x2, …, xd)
Remark : we denote  ;   ;  x(i) := (x(i)

1 , …, x(i)
d ) x−j = (x1, …, xj−1, xj+1, …, xd) xm:n = (xm, xm+1, …, xn)

- Hypothesis : The conditional  can be sampled


- Initialisation :    or random values


- Repeat : 


sample  based on 


for each position,        


        


…


        


P( xj | x−j )

x(0) = (0,…,0)

x(i) = (x(i)
1 , …, x(i)

d ) x(i−1) = (x(i−1)
1 , …, x(i−1)

d )
x(i)

k ∼ P( x1 | x(i)
1:k−1, x(i−1)

k+1:d )

x(i)
2 ∼ P( x2 | x(i)

1 , x(i−1)
3 , …, x(i−1)

d )

x(i)
d ∼ P( xd | x(i)

2 , x(i)
3 , …, x(i−1)

d )

Gibbs Sampling Algorithm

3. Markov Chain Monte Carlo

Algorithm : Gibbs sampling

sometimes it can converge slowly to the desired distribution


sometimes Gibbs samples can be too correlated 



Reminder : we want to sample x(1), …, x(n) ∼ P (x1, x2, …, xd)
Remark : we denote  ;   ;  x(i) := (x(i)

1 , …, x(i)
d ) x−j = (x1, …, xj−1, xj+1, …, xd) xm:n = (xm, xm+1, …, xn)

- Hypothesis : The conditional  can be sampled


- Initialisation :    or random values


- Repeat : 


sample  based on 


for each position,        


        


…


        


P( xj | x−j )

x(0) = (0,…,0)

x(i) = (x(i)
1 , …, x(i)

d ) x(i−1) = (x(i−1)
1 , …, x(i−1)

d )
x(i)

k ∼ P( x1 | x(i)
1:k−1, x(i−1)

k+1:d )

x(i)
2 ∼ P( x2 | x(i)

1 , x(i−1)
3 , …, x(i−1)

d )

x(i)
d ∼ P( xd | x(i)

2 , x(i)
3 , …, x(i−1)

d )

Gibbs Sampling Algorithm

3. Markov Chain Monte Carlo

Algorithm : Gibbs sampling

sometimes it can converge slowly to the desired distribution


sometimes Gibbs samples can be too correlated 
Use a variant Gibbs sampling : Metropolis-Hastings



Reminder : we want to sample x(1), …, x(n) ∼ P (x1, x2, …, xd)
Remark : we denote  ;   ;  x(i) := (x(i)

1 , …, x(i)
d ) x−j = (x1, …, xj−1, xj+1, …, xd) xm:n = (xm, xm+1, …, xn)

- Hypothesis : Let  where  can be calculated and let  be an auxiliary distribution we can sample from


- Initialisation :    or random values


- Repeat :


sample a candidate         (example of auxiliary distribution) 


with acceptance probability :  accept  as an sample from  

P = ̂P/const ̂P Q

x(0) = (0,…,0)

x(i) ∼ Q( x(i) | x(i−1) ) = 𝒩(x(i−1), σ2)

min (1,
Q(x(i−1) |x(i)) × ̂P(x(i))

Q(x(i) |x(i−1)) × ̂P(x(i−1)) ) x(i) P

Metropolis-Hastings Algorithm

3. Markov Chain Monte Carlo

Algorithm : Metropolis-Hastings



Reminder : we want to sample x(1), …, x(n) ∼ P (x1, x2, …, xd)
Remark : we denote  ;   ;  x(i) := (x(i)

1 , …, x(i)
d ) x−j = (x1, …, xj−1, xj+1, …, xd) xm:n = (xm, xm+1, …, xn)

- Hypothesis : Let  where  can be calculated and let  be an auxiliary distribution we can sample from


- Initialisation :    or random values


- Repeat :


sample a candidate         (example of auxiliary distribution) 


with acceptance probability :  accept  as an sample from  

P = ̂P/const ̂P Q

x(0) = (0,…,0)

x(i) ∼ Q( x(i) | x(i−1) ) = 𝒩(x(i−1), σ2I)

min (1,
Q(x(i−1) |x(i)) × ̂P(x(i))

Q(x(i) |x(i−1)) × ̂P(x(i−1)) ) x(i) P

Metropolis-Hastings Algorithm

3. Markov Chain Monte Carlo

Algorithm : Metropolis-Hastings



Reminder : we want to sample x(1), …, x(n) ∼ P (x1, x2, …, xd)
Remark : we denote  ;   ;  x(i) := (x(i)

1 , …, x(i)
d ) x−j = (x1, …, xj−1, xj+1, …, xd) xm:n = (xm, xm+1, …, xn)

Metropolis-Hastings Algorithm

3. Markov Chain Monte Carlo

Algorithm : Metropolis-Hastings

- Hypothesis : Let  where  can be calculated and let  be an auxiliary distribution we can sample from


- Initialisation :    or random values


- Repeat :


sample a candidate         (example of auxiliary distribution) 


with acceptance probability :  accept  as an sample from  

P = ̂P/const ̂P Q

x(0) = (0,…,0)

x(i) ∼ Q( x(i) | x(i−1) ) = 𝒩(x(i−1), σ2I)

min (1,
Q(x(i−1) |x(i)) × ̂P(x(i))

Q(x(i) |x(i−1)) × ̂P(x(i−1)) ) x(i) P



Reminder : we want to sample x(1), …, x(n) ∼ P (x1, x2, …, xd)
Remark : we denote  ;   ;  x(i) := (x(i)

1 , …, x(i)
d ) x−j = (x1, …, xj−1, xj+1, …, xd) xm:n = (xm, xm+1, …, xn)

Metropolis-Hastings Algorithm

3. Markov Chain Monte Carlo

Algorithm : Metropolis-Hastings

- Hypothesis : Let  where  can be calculated and let  be an auxiliary distribution we can sample from


- Initialisation :    or random values


- Repeat :


sample a candidate         (example of auxiliary distribution) 


with acceptance probability :  accept  as an sample from  

P = ̂P/const ̂P Q

x(0) = (0,…,0)

x(i) ∼ Q( x(i) | x(i−1) ) = 𝒩(x(i−1), σ2I)

min (1,
Q(x(i−1) |x(i)) × ̂P(x(i))

Q(x(i) |x(i−1)) × ̂P(x(i−1)) ) x(i) P



Reminder : we want to sample x(1), …, x(n) ∼ P (x1, x2, …, xd)
Remark : we denote  ;   ;  x(i) := (x(i)

1 , …, x(i)
d ) x−j = (x1, …, xj−1, xj+1, …, xd) xm:n = (xm, xm+1, …, xn)

- Hypothesis : Let  where  can be calculated and let  be an auxiliary distribution we can sample from


- Initialisation :    or random values


- Repeat :


sample a candidate         (example of auxiliary distribution) 


with acceptance probability :  accept  as an sample from  

P = ̂P/const ̂P Q

x(0) = (0,…,0)

x(i) ∼ Q( x(i) | x(i−1) ) = 𝒩(x(i−1), σ2I)

min (1,
Q(x(i−1) |x(i)) × ̂P(x(i))

Q(x(i) |x(i−1)) × ̂P(x(i−1)) ) x(i) P

Metropolis-Hastings Algorithm

3. Markov Chain Monte Carlo

Algorithm : Metropolis-Hastings

 and  the correlation 
between two gaussians  and 

τ = σ2 ρ
X1 X2



MCMC vs VI3.b.



3.b. MCMC vs VI

pros and cons

Pros :

- Useful when the posterior is intractable

- Asymptotically exact

- Suited to small / medium dataset

Cons :

- Usually slower than alternatives (VI)

- Can generates dependant samples from the 

distribution

Pros :

- Useful when the posterior is intractable

- Suited to large dataset

Cons :

- Can never generate exact result

MCMC VI (see lecture 3)



Applications : notebook4



Road map!



Bayesian statistics

Latent variable models

Variational Inference

Markov Chain Monte Carlo

1

2

3

4

θ
X

P(θ |X) =
P(X, θ)
P(X)

=
P(X |θ) ⋅ P(θ)

P(X)

Bayesian perspective :

Posterior 
distribution

Likelihood
Prior 

distribution

Evidence

parameters

observations

Exemple :  
Naive Bayes classifier, 
Linear regression, ….

Hard to compute !

MAP :

Conjugate distribution

arg max
θ

P(X |θ) ⋅ P(θ)

Pros :

- exact posterior

Cons :

- conjugate prior 

maybe inadequate

Oral presentations (20 points)

Hidden variable models :

Pros :

- fewer parameters / 

simpler models

- hidden variable 

sometimes meaningful

- clustering / 

dimensionality reduction

Cons :

- harder to work with

- requires math

- only local maximum or 

saddle point

- EM : the posterior of T 

could be intractable

Exemple :  
GMM, K-means, PCA/PPCA

P(X |θ) = ∑
t∈Tindexes

P(X, T = t |θ)

P(X, T |θ) = P(X |T, θ)P(T |θ)

Deterministic approximation of posterior :

p(Z |X) =
P(X |Z) ⋅ P(Z)

P(X)

Mean Field Approximation !
Exemple :  
Topic modelling, LDA trained by VI

Pros :

- Useful when the 

posterior is intractable

- Suited to large dataset

Cons :

- can never generate 

exact result

Sampling techniques for estimate expected values :

Gibbs sampling / Metropolis-Hastings !

Pros :

- train / inference almost 

every probabilistic model

- asymptotically exact

- suited to small / medium 

dataset

Cons :

- Usually slower than 

alternatives (VI)

- can generates dependant 

samples from the 
distribution

𝔼p(x) [h(x)] ≈
1
M

M

∑
s=1

f(xs)

f(xs) ∼ p(x)

Exemple :

Topic modelling, LDA trained by MCMCExercice 1 of lecture 1 : 0.5 bonus point 

Notebook 1 : 1 bonus point 
Notebook 2 : 2 bonus points 
Notebook 3 : 0.5 bonus point 
Notebook 4 : 1 bonus point 
Notebook 5 : 1 bonus point

+

5

Extensions


