ECOLE D’INGENIEURS EN INFORMATIQUE

Bayesian Machine Learning

May 2022 - Francois HU
https://curiousml.github.io/

https://curiousml.github.io/

Outline

Bayesian statistics

Latent variable models

Variational Inference

° Markov Chain Monte Carlo
- Monte Carlo Estimation
- MCMC and differences with VI

Extensions and oral presentations

0 Monte Carlo estimation

1. Monte Carlo estimation
Classic estimation methods

Monte Carlo : Estimate an expected value by sampling. A naive method would be approximating it by its empirical value

1. Monte Carlo estimation
Classic estimation methods

Monte Carlo : Estimate an expected value by sampling. A naive method would be approximating it by its empirical value

Example : et us denote x = (x'V, x?, ..., x") sample of arv. X and U, V ~ %(0,1)

= [X]

=[A(X)]
V(X)

P(X > 2)

1. Monte Carlo estimation
Classic estimation methods

Monte Carlo : Estimate an expected value by sampling. A naive method would be approximating it by its empirical value

Example : et us denote x = (x'V, x?, ..., x") sample of arv. X and U, V ~ %(0,1)

(X L "= %g MG
=[7(X)]

V(X)

P(X > 2)

1. Monte Carlo estimation
Classic estimation methods

Monte Carlo : Estimate an expected value by sampling. A naive method would be approximating it by its empirical value

Example : et us denote x = (x'V, x?, ..., x") sample of arv. X and U, V ~ %(0,1)

C[X] o "= %g + (@
C[h(X)] ~ % ; h(x?)
V(X)
PX > 2)

1. Monte Carlo estimation
Classic estimation methods

Monte Carlo : Estimate an expected value by sampling. A naive method would be approximating it by its empirical value

Example : et us denote x = (x'V, x?, ..., x") sample of arv. X and U, V ~ %(0,1)

1 n
=(n) _ z: (1)
X = — X
n - i

1 < =.
C[h(X)] ~ ;;h(x@)

1 Z (x — x(n))z
& =1

= [X]

&2

V(X)

¢

P(X > 2)

1. Monte Carlo estimation
Classic estimation methods

Monte Carlo : Estimate an expected value by sampling. A naive method would be approximating it by its empirical value

Example : et us denote x = (x'V, x?, ..., x") sample of arv. X and U, V ~ %(0,1)

1 n
=(n) _ z: (1)
X = — X
n - i

1 < =.
C[h(X)] ~ ;;h(x@)

= [X]

&2

1 \ l —=(n 2
V(X) ~ ;Z(X()—X()
=1
1 n
P(X > 2) 7 - Z Losoy
=1

1. Monte Carlo estimation
Classic estimation methods

Monte Carlo : Estimate an expected value by sampling. A naive method would be approximating it by its empirical value

Example : et us denote x = (x'V, x?, ..., x") sample of arv. X and U, V ~ %(0,1)

1 n
=(n) _ z: (1)
X = — X
n - i

1 < =.
C[h(X)] ~ ;;h(x@)

= [X]

&2

1 \ l —(n)\ 2
V(X) v o @0 -E)
=1
1 n
P(X > 2) 7 - Z Losoy
=1
4N @) ,®)
T A ;Z 1{(u(i))2+(v(i))2sl} for u’, v’ ~ CZ[(O,l)

=1

1. Monte Carlo estimation
Motivation

Monte Carlo : Estimate an expected value by sampling. A naive method would be approximating it by its empirical value

Why do we care ?

1. Monte Carlo estimation
Motivation

Monte Carlo : Estimate an expected value by sampling. A naive method would be approximating it by its empirical value
Why do we care ?

- Estimate a large spectrum of probabilistic models

1. Monte Carlo estimation
Motivation

Monte Carlo : Estimate an expected value by sampling. A naive method would be approximating it by its empirical value

Why do we care ?

- Estimate a large spectrum of probabilistic models

Lecture 1 : Bayesian inference

P(y ‘ X, X(tmin)’ Y(tmin))

1. Monte Carlo estimation
Motivation

Monte Carlo : Estimate an expected value by sampling. A naive method would be approximating it by its empirical value
Why do we care ?

- Estimate a large spectrum of probabilistic models

Lecture 1 : Bayesian inference

P(y ‘ X, X(tmin)’ Y(tmin)) — J P(y ‘ X, 9) . P(@ ‘ X(tmin, Y(tmin)) . dO
0

1. Monte Carlo estimation
Motivation

Monte Carlo : Estimate an expected value by sampling. A naive method would be approximating it by its empirical value
Why do we care ?

- Estimate a large spectrum of probabilistic models

Lecture 1 : Bayesian inference

P(y | x, Xram ylrain)y - — J P(y|x,0) - P(@|X"n YUy . dg = E pgixwain yaaimy Py | X, 0)
0

1. Monte Carlo estimation
Motivation

Monte Carlo : Estimate an expected value by sampling. A naive method would be approximating it by its empirical value
Why do we care ?

- Estimate a large spectrum of probabilistic models

Lecture 1 : Bayesian inference

P(y | x, Xram ylrain)y - — J P(y|x,0) - P(@|X"n YUy . dg = E pgixwain yaaimy Py | X, 0)
0

p(Y(train) ‘ X(tmin), 9) . P(@)

with P(@ ‘ X(tmin)’ Y(tmin)) —
constant

1. Monte Carlo estimation
Motivation

Monte Carlo : Estimate an expected value by sampling. A naive method would be approximating it by its empirical value
Why do we care ?

- Estimate a large spectrum of probabilistic models

Lecture 1 : Bayesian inference

P(y | x, Xram ylrain)y - — J P(y|x,0) - P(@|X"n YUy . dg = E pgixwain yaaimy Py | X, 0)
0

(train) (train) . . -
with P(Q| X(raim_ y(rainy p(Y | X . 0) - P(0) easy: model output + prior fixed by us

constant : as always ...

1. Monte Carlo estimation
Motivation

Monte Carlo : Estimate an expected value by sampling. A naive method would be approximating it by its empirical value
Why do we care ?

- Estimate a large spectrum of probabilistic models

Lecture 1 : Bayesian inference

P(y | x, Xram ylrain)y - — J P(y|x,0) - P(@|X"n YUy . dg = E pgixwain yaaimy Py | X, 0)
0

(train) (train) . . -
with P(Q| X(raim_ y(rainy p(Y | X . 0) - P(0) easy: model output + prior fixed by us

constant : as always ...

. .] & . .
P(y|x, XWraim ytrain)y ~ Z P(y|x,0,) if we can sample 6,, ...,6, ~ P(0] X train) -y irain)y
n
i=1

1. Monte Carlo estimation
Motivation

Monte Carlo : Estimate an expected value by sampling. A naive method would be approximating it by its empirical value
Why do we care ?

- Estimate a large spectrum of probabilistic models

Lecture 1 : Bayesian inference

P(y | x, Xram ylrain)y - — J P(y|x,0) - P(@|X"n YUy . dg = E pgixwain yaaimy Py | X, 0)
0

(train) (train) . . -
with P(Q| X(raim_ y(rainy p(Y | X . 0) - P(0) easy: model output + prior fixed by us

constant : as always ...

. .] & . .
P(y|x, XWraim ytrain)y ~ Z P(y|x,0,) if we can sample 6,, ...,6, ~ P(0] X train) -y irain)y
n
i=1

Lecture 2 (and 3) : M-step of EM-algorithm

max E [log PX,T] «9)]

1. Monte Carlo estimation
Motivation

Monte Carlo : Estimate an expected value by sampling. A naive method would be approximating it by its empirical value
Why do we care ?

- Estimate a large spectrum of probabilistic models

Lecture 1 : Bayesian inference

P(y | x, Xram ylrain)y - — J P(y|x,0) - P(@|X"n YUy . dg = E pgixwain yaaimy Py | X, 0)
0

(train) (train) . . -
with P(Q| X(raim_ y(rainy p(Y | X . 0) - P(0) easy: model output + prior fixed by us

constant : as always ...

. .] & . .
P(y|x, XWraim ytrain)y ~ Z P(y|x,0,) if we can sample 6,, ...,6, ~ P(0] X train) -y irain)y
n
i=1

Lecture 2 (and 3) : M-step of EM-algorithm

1 n
max [, [log PX, T| «9)] ~ - Z log P(X,T:|0) ifwecansampleTy,...,T, ~T
i=1

1. Monte Carlo estimation
Motivation

Monte Carlo : Estimate an expected value by sampling. A naive method would be approximating it by its empirical value
Why do we care ?

- Estimate a large spectrum of probabilistic models

Lecture 1 : Bayesian inference

P(y | x, Xram ylrain)y - — J P(y|x,0) - P(@|X"n YUy . dg = E pgixwain yaaimy Py | X, 0)
0

(train) (train) . . -
with P(Q| X(raim_ y(rainy p(Y | X . 0) - P(0) easy: model output + prior fixed by us

constant : as always ...
. .] - .
P(y|x, X train) ylrain)y o Z P(y|x, 6, if we can sample 0,, ...,0, ~ P(0| X (train} /)
n
i=1
Lecture 2 (and 3) : M-step of EM-algorithm
1 n
max [, [log PX, T| «9)] N — Z log P(X,T:|0) if we can sampls L, ~T
0 n

=1

1. Monte Carlo estimation
Usual simulations : the power of uniform distribution

Starting point : we know how to simulate a pseudo-random uniform U ~ 2/(0,1)

For « usual » distributions : both discrete and continuous r.v. can be sampled thanks to the uniform distribution

In practice (with python) we can easily sample them (via scipy and numpy for example)

1. Monte Carlo estimation
Usual simulations : the power of uniform distribution

Starting point : we know how to simulate a pseudo-random uniform U ~ 2/(0,1)

For « usual » distributions : both discrete and continuous r.v. can be sampled thanks to the uniform distribution

In practice (with python) we can easily sample them (via scipy and numpy for example)

Otherwise : if there isn’t an analytical way to sample it then

Rejection sampling algorithm.
Assumption : we can compute distribution’s pdf P and sample from an Q) s.t. P <constxQ

1. Monte Carlo estimation
Usual simulations : the power of uniform distribution

Starting point : we know how to simulate a pseudo-random uniform U ~ 2/(0,1)

For « usual » distributions : both discrete and continuous r.v. can be sampled thanks to the uniform distribution

In practice (with python) we can easily sample them (via scipy and numpy for example)

Otherwise : if there isn’t an analytical way to sample it then

Rejection sampling algorithm.

Assumption : we can compute distribution’s pdf P and sample from an Q) s.t. P <constxQ
Algorithm
1. generate sample x; ~ O ()

2. generate sample u ~ 2/(0, const - Q(X;))
3. if u < P(x;) then accept x; else reject.

1. Monte Carlo estimation
Usual simulations : the power of uniform distribution

Starting point : we know how to simulate a pseudo-random uniform U ~ 2/(0,1)

For « usual » distributions : both discrete and continuous r.v. can be sampled thanks to the uniform distribution

In practice (with python) we can easily sample them (via scipy and numpy for example)

Otherwise : if there isn’t an analytical way to sample it then

Rejection sampling algorithm.

Assumption : we can compute distribution’s pdf P and sample from an Q) s.t. P <constxQ
Algorithm
- target distribution
1. generate sample x; ~ O () a auilary distribution
2. generate sample u ~ 2/(0, const - Q(X;)) 0130

3. if u < P(x;) then accept x; else reject. 0125~

0.100 A

p(x)

0.075 A

0.050 A
0.025 A
0.000 -

-15 -10 -5 0 5 10 15

1. Monte Carlo estimation
Usual simulations : the power of uniform distribution

Starting point : we know how to simulate a pseudo-random uniform U ~ 2/(0,1)

For « usual » distributions : both discrete and continuous r.v. can be sampled thanks to the uniform distribution

In practice (with python) we can easily sample them (via scipy and numpy for example)

Otherwise : if there isn’t an analytical way to sample it then

Rejection sampling algorithm.

Assumption : we can compute distribution’s pdf P and sample from an Q) s.t. P <constxQ
Algorithm
- target distribution
1. generate sample x; ~ Q () oA auiliary disributon
2. generate sample u ~ 2/(0, const - Q(X;)) 0.130°

3. if u < P(x;) then accept x; else reject. 0125

0.100 A

p(x)

0.075 A

0.050 A

@
0.025 A
0.000 -

-15 -10 -5 0 5 10 15

1. Monte Carlo estimation
Usual simulations : the power of uniform distribution

Starting point : we know how to simulate a pseudo-random uniform U ~ 2/(0,1)

For « usual » distributions : both discrete and continuous r.v. can be sampled thanks to the uniform distribution

In practice (with python) we can easily sample them (via scipy and numpy for example)

Otherwise : if there isn’t an analytical way to sample it then

Rejection sampling algorithm.

Assumption : we can compute distribution’s pdf P and sample from an Q) s.t. P <constxQ
Algorithm
- target distribution
1. generate sample x; ~ Q () oH auniliary disributon
2. generate sample u ~ 2/(0, const - Q(X;)) 0.130°

3. if u < P(x;) then accept x; else reject. 0125

0.100 -

p(x)

0.075 -

0.050 -

<@
0.025 -
0.000 -

-15 -10 -5 0 5 10 15

1. Monte Carlo estimation
Usual simulations : the power of uniform distribution

Starting point : we know how to simulate a pseudo-random uniform U ~ 2/(0,1)

For « usual » distributions : both discrete and continuous r.v. can be sampled thanks to the uniform distribution

In practice (with python) we can easily sample them (via scipy and numpy for example)

Otherwise : if there isn’t an analytical way to sample it then

Rejection sampling algorithm.

Assumption : we can compute distribution’s pdf P and sample from an Q) s.t. P <constxQ
Algorithm
- target distribution
1. generate sample x; ~ Q () oA auilary disributon
2. generate sample u ~ 2/(0, const - Q(X;)) 0.130°

3. if u < P(x;) then accept x; else reject. 0125

0.100 H

p(x)

0.075 -

0.050 A

<@
0.025 A
0.000 -

-15 -10 -5 0 5 10 15

1. Monte Carlo estimation
Usual simulations : the power of uniform distribution

Starting point : we know how to simulate a pseudo-random uniform U ~ 2/(0,1)

For « usual » distributions : both discrete and continuous r.v. can be sampled thanks to the uniform distribution

In practice (with python) we can easily sample them (via scipy and numpy for example)

Otherwise : if there isn’t an analytical way to sample it then

Rejection sampling algorithm.

Assumption : we can compute distribution’s pdf P and sample from an Q) s.t. P <constxQ
Algorithm
- target distribution
1. generate sample x; ~ Q () oA auniliary disributon
2. generate sample u ~ 2/(0, const - Q(X;)) 0.130°

3. if u < P(x;) then accept x; else reject. 0125~

0.100 H

p(x)

0.075 -

0.050 A

. .
0.025 A
0.000 A

-15 -10 -5 0 5 10 15

1. Monte Carlo estimation
Usual simulations : the power of uniform distribution

Starting point : we know how to simulate a pseudo-random uniform U ~ 2/(0,1)

For « usual » distributions : both discrete and continuous r.v. can be sampled thanks to the uniform distribution

In practice (with python) we can easily sample them (via scipy and numpy for example)

Otherwise : if there isn’t an analytical way to sample it then

Rejection sampling algorithm.

Assumption : we can compute distribution’s pdf P and sample from an Q) s.t. P <constxQ
Algorithm
- target distribution
1. generate sample x; ~ Q () oA auniliary disributon
2. generate sample u ~ 2/(0, const - Q(X;)) 0.130°

3. if u < P(x;) then accept x; else reject. 0125~

0.100 H

p(x)

0.075 -

0.050 A

<@
0.025 A
0.000 A

-15 -10 -5 0 5 10 15

1. Monte Carlo estimation
Usual simulations : the power of uniform distribution

Starting point : we know how to simulate a pseudo-random uniform U ~ 2/(0,1)

For « usual » distributions : both discrete and continuous r.v. can be sampled thanks to the uniform distribution

In practice (with python) we can easily sample them (via scipy and numpy for example)

Otherwise : if there isn’t an analytical way to sample it then

Rejection sampling algorithm.

Assumption : we can compute distribution’s pdf P and sample from an Q) s.t. P <constxQ
Algorithm
1 0.175 - - target distribution
. generate sample x; ~ O () —— auxiliary distribution
2. generate sample u ~ 2/(0, const - Q(X;)) (50 ‘

3. if u < P(x;) then accept x; else reject. 0.125 -

0.100 -

p(x)

0.075 A

0.050 H
HEN HEN 0025 7
0.000 ~

-15 -10 -5 0 5 10 15

1. Monte Carlo estimation
Usual simulations : the power of uniform distribution

Starting point : we know how to simulate a pseudo-random uniform U ~ 2/(0,1)

For « usual » distributions : both discrete and continuous r.v. can be sampled thanks to the uniform distribution

In practice (with python) we can easily sample them (via scipy and numpy for example)

Otherwise : if there isn’t an analytical way to sample it then

Rejection sampling algorithm.

Assumption : we can compute distribution’s pdf P and sample from an Q) s.t. P <constxQ
Algorithm
1 0.175 - - target distribution
. generate sample x; ~ O () auxiliary distribution
2. generate sample u ~ 2/(0, const - Q(X;)) (50

3. if u < P(x;) then accept x; else reject. 0.125 -

0.100 -

p(x)

0.075 A

0.050 H
nua 0.025 A
0.000 +

-15 -10 -5 0 5 10 15

1. Monte Carlo estimation
Usual simulations : the power of uniform distribution

Starting point : we know how to simulate a pseudo-random uniform U ~ 2/(0,1)

For « usual » distributions : both discrete and continuous r.v. can be sampled thanks to the uniform distribution

In practice (with python) we can easily sample them (via scipy and numpy for example)

Otherwise : if there isn’t an analytical way to sample it then

Rejection sampling algorithm.

Assumption : we can compute distribution’s pdf P and sample from an Q) s.t. P <constxQ
Algorithm
1 0.175 - - target distribution
. generate sample x; ~ O () —— auxiliary distribution
2. generate sample u ~ 2/(0, const - Q(X;)) (50 ‘

3. if u < P(x;) then accept x; else reject. 0.125 -

0.100 -

p(x)

0.075 A

0.050 ~
V works for most distribution 0.025 -

if the « gaps » between P and Q are too large, 15 -10 -5 0 5 10 15
we reject most of the sample

x 0.000 -

ONOIO

1. Monte Carlo estimation
Usual simulations : the power of uniform distribution

Starting point : we know how to simulate a pseudo-random uniform U ~ 2/(0,1)

For « usual » distributions : both discrete and continuous r.v. can be sampled thanks to the uniform distribution

In practice (with python) we can easily sample them (via scipy and numpy for example)

Otherwise : if there isn’t an analytical way to sample it then

Rejection sampling algorithm.

Assumption : we can compute distribution’s pdf P and sample from an Q) s.t. P <constxQ
Algorithm
1 0.175 - - target distribution
. generate sample x; ~ O () —— auxiliary distribution
2. generate sample u ~ 2/(0, const - Q(X;)) (50 ‘

3. if u < P(x;) then accept x; else reject. 0.125 -

0.100 -

p(x)

0.075 A

0.050 ~
V works for most distribution 0.025 -

if the « gaps » between P and Q ar .drge, 15 -10 -5 0 5 10 15
we reject most of the sample

x 0.000 -

ONOIO

e Markov Chain Monte Carlo : Definition

2. Markov Chain Monte Carlo

Definition : Monte Carlo sampling

Monte Carlo sampling : generates independent samples from the probability distribution in order to estimate an expected value

@ @ @ where X, ..., X ~ P i.i.d

2. Markov Chain Monte Carlo

Definition : Markov Chain

Monte Carlo sampling : generates independent samples from the probability distribution in order to estimate an expected value

@ @ @ where X, ..., X ~ P i.i.d

Markov Chain : generates a sequence of r.v. where the next variable is probabilistically dependent upon the current variable.

the transition probability of being in

P is called stationary if P(x) = Z T(x,x") - P(x) the state x’ given the current state x
xesupp(X)

2. Markov Chain Monte Carlo

Definition : Markov Chain Monte Carlo

Monte Carlo sampling : generates independent samples from the probability distribution in order to estimate an expected value

@ @ @ where X, ..., X ~ P i.i.d

Markov Chain : generates a sequence of r.v. where the next variable is probabilistically dependent upon the current variable.

the transition probability of being in

P is called stationary if P(x") = Z I(x,x) - P(x) the state x’ given the current state x
xesupp(X)

Markov Chain Monte Carlo sampling : a sequence of Monte Carlo Samples where the next sample is dependent upon the current sample

T T T T T T
ﬁ ﬁ N ﬁﬁ ﬁ h ﬁ

Xpi1s s Xpy, ~ P with some possible correlations

2. Markov Chain Monte Carlo

Definition : Markov Chain Monte Carlo

Monte Carlo sampling : generates independent samples from the probability distribution in order to estimate an expected value

@ @ @ where X, ..., X ~ P i.i.d

Markov Chain : generates a sequence of r.v. where the next variable is probabilistically dependent upon the current variable.

the transition probability of being in

P is called stationary if P(x’) = Z I(x,x") - P(x) the state x’ given the current state x
xesupp(X)

Markov Chain Monte Carlo sampling : a sequence of Monte Carlo Samples where the next sample is dependent upon the current sample

T T T T T T
ﬁ ﬁ N ﬁﬁ ﬁ h ﬁ

Xpi1s s Xpy, ~ P with some possible correlations

Objective : Build a Markov Chain that converges to the target distribution P no matter the starting point

2. Markov Chain Monte Carlo

Definition : Markov Chain Monte Carlo

Monte Carlo sampling : generates independent samples from the probability distribution in order to estimate an expected value

@ @ @ where X, ..., X ~ P i.i.d

Markov Chain : generates a sequence of r.v. where the next variable is probabilistically dependent upon the current variable.

the transition probability of being in

P is called stationary if P(x’) = Z I(x,x") - P(x) the state x’ given the current state x
xesupp(X)

Markov Chain Monte Carlo sampling : a sequence of Monte Carlo Samples where the next sample is dependent upon the current sample

T T T T T T
ﬁ ﬁ N ﬁﬁ ﬁ h ﬁ

Xpi1s s Xpy, ~ P with some possible correlations

Objective : Build a Markov Chain that converges to the target distribution P no matter the starting point

Theorem : if T(x, x") > O for all x, x" then there exists an unique stationary and convergent distribution

e Markov Chain Monte Carlo : Algorithms

3. Markov Chain Monte Carlo
Algorithm : Gibbs sampling

Reminder : we want to sample x‘U, ..., x" ~ P (xl,xz, ...,xd)

Remark : we denote x) := (xl(’), ...,xé”) ;X = (xl, s X5 Xy ...,xd> DX, = (xm, Xyt 15 ...,xn)

Gibbs Sampling Algorithm

- Hypothesis : The conditional P(X; | x_j) can be sampled

- Initialisation : x*) = (0,...,0) or random values

- Repeat:

3. Markov Chain Monte Carlo
Algorithm : Gibbs sampling

Reminder : we want to sample x‘U, ..., x" ~ P (xl,xz, ...,xd)

Remark : we denote x) := (xl(’), ...,xé”) ;X = (xl, s X5 Xy ...,xd> DX, = (xm, Xyt 15 ...,xn)

Gibbs Sampling Algorithm
- Hypothesis : The conditional P(X; | x_j) can be sampled
- Initialisation : x*) = (0,...,0) or random values

- Repeat:

sample x = <x1(i), ...,xc(li)> based on x™1) = <x1(i_1), ...,xc(ii_l)>

) (i—1) ,.G—1) (i—1)
X, P()cl\x2 AN)

3. Markov Chain Monte Carlo
Algorithm : Gibbs sampling

Reminder : we want to sample x‘U, ..., x" ~ P (xl,xz, ...,xd)
Remark : we denote x) := (xl(i), ...,x(i)> ; X_j = (xl, oo X1 X1 ...,xd> S (x Xippils ooesX)

d m:n n

Gibbs Sampling Algorithm

- Hypothesis : The conditional P(X; | x_j) can be sampled

- Initialisation : x*) = (0,...,0) or random values

- Repeat:

sample x\) = <x1(i), fﬁ) based on x 1) = <x1(i_1), ...,xff‘”)

) (i—1) ,.G—1) (i—1)
X, P()cl\x2 AN)

(Z)N () 5 G=1) (i—1)
P(x, \x X X)

3. Markov Chain Monte Carlo
Algorithm : Gibbs sampling

Reminder : we want to sample x‘U, ..., x" ~ P (xl,xz, ...,xd)
Remark : we denote x) := (xl(i), ...,x(i)> ; X_j = (xl, oo X1 X1 ...,xd> S (x Xippils ooesX)

d m:n n

Gibbs Sampling Algorithm

- Hypothesis : The conditional P(X; | x_j) can be sampled

- Initialisation : x*) = (0,...,0) or random values

- Repeat:

sample x\) = (xl(i), fﬁ) based on x 1) = <x1(i_1), ...,xff‘”)

) (i—1) ,.G—1) (i—1)
X, P(xl\x2 AN)

(Z)N () 5 G=1) (i—1)
P(x, \x X X)

| -
xg) ~ P(x, | xW. x 3(’), e, xg))

3. Markov Chain Monte Carlo
Algorithm : Gibbs sampling

Reminder : we want to sample x‘U, ..., x" ~ P (xl,xz, ...,xd)
Remark : we denote x) := (xl(i), ...,xé”) ; X_j = (xl, oo X1 X1 ...,xd> ; Xy = (x Xiptls » - xn)

Gibbs Sampling Algorithm

- Hypothesis : The conditional P(x; | Xx_;) can be sampled

- Initialisation : x*) = (0,...,0) or random values

- Repeat:

sample x = (xl(i) - C(Z’)> based on x ™D = (xl(i_l), ...,xc(li_l))

L) i) =)
for each position, x,"” ~ P(x, \xlzk_l, 1.)

3. Markov Chain Monte Carlo
Algorithm : Gibbs sampling

Reminder : we want to sample x‘U, ..., x" ~ P (xl,xz, ...,xd)
Remark : we denote x) := (xl(i), ...,xé”) ; X_j = (xl, oo X1 X1 ...,xd> ; Xy = (x Xiptls » - xn)

Gibbs Sampling Algorithm

- Hypothesis : The conditional P(x; | Xx_;) can be sampled

- Initialisation : x*) = (0,...,0) or random values

- Repeat:
sample xV) = (xl(i), C(Z’)> based on xU ™D = (xl(i_l), ...,xa(li_l))
D) M) =1)
for each position, x, P(x| X 10 Xy d)

sometimes it can converge slowly to the desired distribution

sometimes Gibbs samples can be too correlated

3. Markov Chain Monte Carlo
Algorithm : Gibbs sampling

Reminder : we want to sample x‘U, ..., x" ~ P (xl,xz, ...,xd)

Remark : we denote x) := (xl(i), ...,x(i)> ; X_j = (xl, oo X1 X1 ...,xd> S (x Xippils ooesX)

d m:n n

Gibbs Sampling Algorithm

- Hypothesis : The conditional P(x; | Xx_;) can be sampled

- Initialisation : x*) = (0,...,0) or random values

- Repeat:
sample xV) = (xl(i), C(Z’)> based on xU ™D = (xl(i_l), ...,xc(li_l))
D) M) =1)
for each position, x, P(x| X 10 Xy d)

. . . Wastiin
sometimes it can converoes \etro olis na q.ambutlon

. ~:cs can be too correlated

3. Markov Chain Monte Carlo
Algorithm : Metropolis-Hastings

Reminder : we want to sample x‘U, ..., x" ~ P (xl,xz, ...,xd)
Remark : we denote x) := (xl(i), ...,xé”) ; X_j = (xl, oo X1 X1 ...,xd> ; Xy = (xm, Xa1s ...,xn)

Metropolis-Hastings Algorithm

- Hypothesis : Let P = P/const where P can be calculated and let () be an we can sample from

- Initialisation : x(= (0,...,0) or random values

- Repeat.:

3. Markov Chain Monte Carlo
Algorithm : Metropolis-Hastings

Reminder : we want to sample x‘U, ..., x" ~ P (xl,xz, ...,xd)

Remark : we denote x) := (xl(’), ...,xé”) ;X = (xl, s X5 Xy ...,xd> DX, = (xm, Xyt 15 ...,xn)

Metropolis-Hastings Algorithm

- Hypothesis : Let P = P/const where P can be calculated and let () be an we can sample from

- Initialisation : x(= (0,...,0) or random values
- Repeat.:

sample a candidate x) ~ Q(x| x=1) = (example of auxiliary distribution) A (x"~1, 621

3. Markov Chain Monte Carlo
Algorithm : Metropolis-Hastings

Reminder : we want to sample x‘U, ..., x" ~ P (xl,xz, ...,xd)

Remark : we denote x) := (xl(’), ...,xé”) ;X = (xl, s X5 Xy ...,xd> DX, = (xm, Xyt 15 ...,xn)

Metropolis-Hastings Algorithm

- Hypothesis : Let P = P/const where P can be calculated and let () be an we can sample from

- Initialisation : x(= (0,...,0) or random values
- Repeat.:

sample a candidate x) ~ Q(x® | x=1) = (example of auxiliary distribution) A4 (x"~1, 6*1I)

. O(x"V]x) x P(x") |
with acceptance probability : min|{ 1, — accept x% as an sample from P
O(x® | x=D) x P(x(=D)

3. Markov Chain Monte Carlo
Algorithm : Metropolis-Hastings

Reminder : we want to sample x‘U, ..., x" ~ P (xl,xz, ...,xd)

Remark : we denote x) := (xl(’), ...,xé”) ;X = (xl, s X5 Xy ...,xd> DX, = (xm, Xyt 15 ...,xn)

Metropolis-Hastings Algorithm

- Hypothesis : Let P = P/const where P can be calculated and let () be an we can sample from

- Initialisation : x(= (0,...,0) or random values
- Repeat.:

sample a candidate x) ~ Q(x® | x=1) = (example of auxiliary distribution) A/ (x"~1, 6*I)

. O(xE=D150Y 5 p(xD) |
with acceptance probability : min | 1,— \(‘\ T B accept x'”) as an sample from P
OOl x =) x P(x(-D)

3. Markov Chain Monte Carlo
Algorithm : Metropolis-Hastings

Reminder : we want to sample x(l), ...,x(”) ~ P (xl,xz, ...,xd)

Remark : we denote x) := (xl(’), ...,xc(;)> , X_j = (xl, ERTR AN PR b ...,xd) y Xy = (xm,xm+1, ...,xn)

Metropolis-Hastings Algorithm

- Hypothesis : Let P = P/const where P can be calculated and let () be an auxiliary distribution we can sample from

- Initialisation : x) = (0,...,0) or random values
- Repeat.:
sample a candidate x) ~ Q(x® | x=1) = (example of auxiliary distribution) A/ (x"~1, 6*I)
. (ol P 1
with acceptance probability : min | 1, — — accept x*" as an sample from P
O(xlx =D x P(x(i=1)

rho = 0.9, tau = 0.001 rho=09,tau=1 rho=09,tau=5 rho = 0.9, tau = 100

0.50 1
0.25 1
0.00 1

-0.25
< -0.50
-0.75 1
-1.00 A

-1.25

-1.50 -

3.b. MCMC vs VI

pros and cons

MCMC VI (see lecture 3)

Pros : Pros :

- Useful when the posterior is intractable - Useful when the posterior is intractable

- Asymptotically exact - Suited to large dataset
- Suited to small / medium dataset

Cons:

- Can generates dependant samples from the
distribution

° Applications : notebook

Bayesian statistics Variational Inference

i Deterministic approximation of posterior :
d Latent variable models 3 PP P
P(X|Z) - P(Z)
p(Z|X) =
2 P(X)
Bayesian perspective : i . L
y Persp Likelihood Stljig?ﬁi o Mean Field Approximation !
Hidden variable models :
. Exemple :
P(H | X) — P(X’ 9) — P(Xl 9) P(H) Topic modelling, LDA trained by VI
Box oy PX|0)=) PX.T=t|0)
Posterior () () Pros :
distribution Evidence '€ Lindexes - Useful when the
— posterior is intractable
@) parameters Hard to compute ! P(X’ Tl 9) P(Xl L, H)P(Tl ‘9) - Suited to large dataset
_ Exemple :
X observations GMM, K-means, PCA/PPCA
Exemple : MAP : argmax P(X|8) - P(0) Pros - :
Naive Bayes classifier, 0 e SR i
Linear regression, Conjugate distribution B el JEI ELAVE L L Markov Chain Monte Carlo

simpler models

- hidden variable
sometimes meaningful

- clustering /
dimensionality reduction

requires math

only local maximum or Sampling techniques for estimate expected values :

A s saddle point

- exact posterior

4

1 M
By RGO 2 — 3 f(x)
s=1

Oral presentations (20 points)
+

Exercice 1 of lecture 1 : 0.5 bonus point

Notebook 1 : 1 bonus point
Notebook 2 : 2 bonus points

f(xs) ~ p(X) Gibbs sampling / Metropolis-Hastings !

Extensions .
Exemple :

Topic modelling, LDA trained by MCMC

Pros : Cons:
train / inference almost

every probabilistic model

Notebook 3 : 0.5 bonus point
Notebook 4 : 1 bonus point
Notebook 5 : 1 bonus point

asymptotically exact - can generates dependant
suited to small / medium samples from the

dataset distribution

