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- train probabilistic models with EM-algorithm 

3. Variational Inference 
- Variational Inference for probabilistic models 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- Application on textual data with LDA 

4. Markov Chain Monte Carlo 
- Monte Carlo Estimation 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Theorem : if  for all  then there exists an unique stationary and convergent distributionT(x, x′￼) > 0 x, x′￼



Markov Chain Monte Carlo : Algorithms3



3. Markov Chain Monte Carlo
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Remark : we denote  ;   ;  x(i) := (x(i)

1 , …, x(i)
d ) x−j = (x1, …, xj−1, xj+1, …, xd) xm:n = (xm, xm+1, …, xn)

- Hypothesis : The conditional  can be sampled


- Initialisation :    or random values


- Repeat : 


sample  based on 


        


        


…


        


P( xj | x−j )

x(0) = (0,…,0)

x(i) = (x(i)
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d ) x(i−1) = (x(i−1)
1 , …, x(i−1)

d )
x(i)
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2 , x(i−1)

3 , …, x(i−1)
d )

x(i)
2 ∼ P( x2 | x(i)

1 , x(i−1)
3 , …, x(i−1)

d )

x(i)
d ∼ P( xd | x(i)

2 , x(i)
3 , …, x(i−1)

d )

Gibbs Sampling Algorithm
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3. Markov Chain Monte Carlo

Algorithm : Gibbs sampling

sometimes it can converge slowly to the desired distribution


sometimes Gibbs samples can be too correlated 
Use a variant Gibbs sampling : Metropolis-Hastings
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P = ̂P/const ̂P Q

x(0) = (0,…,0)

x(i) ∼ Q( x(i) | x(i−1) ) = 𝒩(x(i−1), σ2)

min (1,
Q(x(i−1) |x(i)) × ̂P(x(i))

Q(x(i) |x(i−1)) × ̂P(x(i−1)) ) x(i) P

Metropolis-Hastings Algorithm
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3. Markov Chain Monte Carlo

Algorithm : Metropolis-Hastings

 and  the correlation 
between two gaussians  and 

τ = σ2 ρ
X1 X2



MCMC vs VI3.b.



3.b. MCMC vs VI

pros and cons

Pros :

- Useful when the posterior is intractable

- Asymptotically exact

- Suited to small / medium dataset

Cons :

- Usually slower than alternatives (VI)

- Can generates dependant samples from the 

distribution

Pros :

- Useful when the posterior is intractable

- Suited to large dataset

Cons :

- Can never generate exact result

MCMC VI (see lecture 3)
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Road map!



Bayesian statistics

Latent variable models

Variational Inference

Markov Chain Monte Carlo

1

2

3

4

θ
X

P(θ |X) =
P(X, θ)
P(X)

=
P(X |θ) ⋅ P(θ)

P(X)

Bayesian perspective :

Posterior 
distribution

Likelihood
Prior 

distribution

Evidence

parameters

observations

Exemple :  
Naive Bayes classifier, 
Linear regression, ….

Hard to compute !

MAP :

Conjugate distribution

arg max
θ

P(X |θ) ⋅ P(θ)

Pros :

- exact posterior

Cons :

- conjugate prior 

maybe inadequate

Oral presentations (20 points)

Hidden variable models :

Pros :

- fewer parameters / 

simpler models

- hidden variable 

sometimes meaningful

- clustering / 

dimensionality reduction

Cons :

- harder to work with

- requires math

- only local maximum or 

saddle point

- EM : the posterior of T 

could be intractable

Exemple :  
GMM, K-means, PCA/PPCA

P(X |θ) = ∑
t∈Tindexes

P(X, T = t |θ)

P(X, T |θ) = P(X |T, θ)P(T |θ)

Deterministic approximation of posterior :

p(Z |X) =
P(X |Z) ⋅ P(Z)

P(X)

Mean Field Approximation !
Exemple :  
Topic modelling, LDA trained by VI

Pros :

- Useful when the 

posterior is intractable

- Suited to large dataset

Cons :

- can never generate 

exact result

Sampling techniques for estimate expected values :

Gibbs sampling / Metropolis-Hastings !

Pros :

- train / inference almost 

every probabilistic model

- asymptotically exact

- suited to small / medium 

dataset

Cons :

- Usually slower than 

alternatives (VI)

- can generates dependant 

samples from the 
distribution

𝔼p(x) [h(x)] ≈
1
M

M

∑
s=1

f(xs)

f(xs) ∼ p(x)

Exemple :

Topic modelling, LDA trained by MCMCExercice 1 of lecture 1 : 0.5 bonus point 

Notebook 1 : 1 bonus point 
Notebook 2 : 2 bonus points 
Notebook 3 : 0.5 bonus point 
Notebook 4 : 1 bonus point 
Notebook 5 : 1 bonus point

+

5

Extensions


