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1. Bayesian statistics 

- define a probabilistic model 
- apply bayesian inference 
- conjugate priors 

2. Latent variable models 
- define latent variable and apply them to simplify probabilistic model 
- cluster data with latent models like GMM 
- train probabilistic models with EM-algorithm 

3. Variational Inference 
- Variational Inference for probabilistic models 
- Introduction to NLP 
- Application on textual data with LDA 

4. Markov Chain Monte Carlo 
- Monte Carlo Estimation 
- MCMC and differences with VI 

5. Extensions and oral presentations
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Markov Chain Monte Carlo : Algorithms3



3. Markov Chain Monte Carlo 
Algorithm : Gibbs sampling
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d )

Gibbs Sampling Algorithm
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3. Markov Chain Monte Carlo 
Algorithm : Gibbs sampling

sometimes it can converge slowly to the desired distribution 

sometimes Gibbs samples can be too correlated 
Use a variant Gibbs sampling : Metropolis-Hastings
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P = ̂P/const ̂P Q
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Metropolis-Hastings Algorithm
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 and  the correlation 
between two gaussians  and 

τ = σ2 ρ
X1 X2



MCMC vs VI3.b.



3.b. MCMC vs VI 
pros and cons

Pros : 
- Useful when the posterior is intractable 
- Asymptotically exact 
- Suited to small / medium dataset

Cons : 
- Usually slower than alternatives (VI) 
- Can generates dependant samples from the 

distribution

Pros : 
- Useful when the posterior is intractable 
- Suited to large dataset

Cons : 
- Can never generate exact result

MCMC VI (see lecture 3)



Applications : notebook4



Road map!



Bayesian statistics

Latent variable models

Variational Inference

Markov Chain Monte Carlo

1

2

3

4

θ
X

P(θ |X) =
P(X, θ)
P(X)

=
P(X |θ) ⋅ P(θ)

P(X)

Bayesian perspective :

Posterior 
distribution

Likelihood
Prior 

distribution

Evidence

parameters

observations

Exemple :  
Naive Bayes classifier, 
Linear regression, ….

Hard to compute !

MAP :

Conjugate distribution

arg max
θ

P(X |θ) ⋅ P(θ)

Pros : 
- exact posterior

Cons : 
- conjugate prior 

maybe inadequate

Oral presentations (20 points)

Hidden variable models :

Pros : 
- fewer parameters / 

simpler models 
- hidden variable 

sometimes meaningful 
- clustering / 

dimensionality reduction

Cons : 
- harder to work with 
- requires math 
- only local maximum or 

saddle point 
- EM : the posterior of T 

could be intractable

Exemple :  
GMM, K-means, PCA/PPCA

P(X |θ) = ∑
t∈Tindexes

P(X, T = t |θ)

P(X, T |θ) = P(X |T, θ)P(T |θ)

Deterministic approximation of posterior :

p(Z |X) =
P(X |Z) ⋅ P(Z)

P(X)

Mean Field Approximation !
Exemple :  
Topic modelling, LDA trained by VI

Pros : 
- Useful when the 

posterior is intractable 
- Suited to large dataset

Cons : 
- can never generate 

exact result

Sampling techniques for estimate expected values :

Gibbs sampling / Metropolis-Hastings !

Pros : 
- train / inference almost 

every probabilistic model 
- asymptotically exact 
- suited to small / medium 

dataset

Cons : 
- Usually slower than 

alternatives (VI) 
- can generates dependant 

samples from the 
distribution

𝔼p(x) [h(x)] ≈
1
M

M

∑
s=1

f(xs)

f(xs) ∼ p(x)

Exemple :

Topic modelling, LDA trained by MCMCExercice 1 of lecture 1 : 0.5 bonus point 

Notebook 1 : 1 bonus point 
Notebook 2 : 2 bonus points 
Notebook 3 : 0.5 bonus point 
Notebook 4 : 1 bonus point 
Notebook 5 : 1 bonus point

+

5

Extensions


