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Outline
1. Bayesian statistics 

- define a probabilistic model 
- apply bayesian inference 
- conjugate priors 

2. Latent variable models 
- Latent variable models and EM algorithm 
- Probabilistic clustering 
- Probabilistic dimensionality reduction 

3. Variational Inference 
- Variational Inference for probabilistic models 
- introduction of NLP and topic modeling 
- Application on textual data with LDA 

4. Markov Chain Monte Carlo 
- train / do inference almost any probabilistic model with MCMC 
- pros and cons of MCMC / VI 

5. Extensions and oral presentations
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Evaluation & conjugate prior0



Evaluation (1/2) 
Group project

- The evaluation will consist of a group project (4 students max) based on a research article 

- For the last lecture, each student will send me the codes (only in Python! Some of the paper's implementations are in R or 
Matlab, but you need to adapt them) and give an oral presentation in front of the class. Even if the article is mostly 
theoretical, each presentation should be understandable by other students (The clarity of the speech will be analysed). 

- Initiatives like more experimentations or identifying the limits of the article will be greatly appreciated. You are welcome to 
consult other research articles (highly recommended, it should be cited at the end of your presentation) to boost your 
knowledge. 

- The evaluation is as follows : 

- 40% on the clarity of the code (example : many comments, along with understandable variables/functions names. You 
can use Jupyter Notebook which might have the advantage to be easy to read for the users). When I run your code, it 
should be easy to run and easy to understand :) 

- 60% on the clarity of the oral presentation. Less maths but more experimentations and intuitions. At the beginning a 
big introduction is expected in order to be understandable by other groups.



Evaluation (2/2) 
Group project

1. Project Interpretability: 
main paper « DAG-GNN: DAG structure learning with graph neural networks » 

2. Project Fairness:  
main paper: « Fair Data Adaptation with Quantile Preservation » 
R package: « fairadapt: Causal Reasoning for Fair Data Pre-processing » 

3. Project Uncertainty: 
main paper: « Dropout as a bayesian approximation: Representing model uncertainty in deep learning » 

4. Project Topic modeling: 
main paper: « Mixing dirichlet topic models and word embeddings to make lda2vec » 
open question: Propose a way to automatically generate a topic’s title. Implement it. 

5. Project Missing values:  
main paper: « What’s a good imputation to predict with missing values? » 
 

http://proceedings.mlr.press/v97/yu19a.html
https://arxiv.org/abs/1605.02019


Conjugate priors: Exercices 
Gamma case



Conjugate priors: Exercices 
Beta case



Latent variable models and mixture models1



1. Latent Variable Models 
Spoilers

Latent variable models : a statistical model that links a set of observable variables to a set of unobservable (latent) variables

Other latent variable models : unsupervised methods

- Clustering models 
 

- Dimensionality reduction models

Questions :

- Why do we need latent variable models ? simpler models (so fewer parameters) without reducing its flexibility  

- How to train these models ? next section

Example : Bayesian Linear regression

θ

Y

x

Hidden 
(latent) r.v.

Observed 
r.v.

Fixed variable



1. Latent Variable Models 
Mixture models : Definition

Mixture models : a probabilistic model representing a linear combination of different distributions

Example : synthetic data

Mixture modeling provides the 
freedom / flexibility to model the 
unknown pdf. Downside : more 
parameters
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Mixture models : a probabilistic model representing a linear combination of different distributions

Example : synthetic data

Mixture modeling provides the 
freedom / flexibility to model the 
unknown pdf. Downside : more 
parameters

Let’s fit a gaussian !

𝒩(μ, Σ)

How do we tra
in this model ? We want to fit a Gaussian Mixture Model (GMM) !

4

∑
k=1

πk ⋅ 𝒩(μk, Σk)

parameters :{πk, μk, Σk}k∈{1,…,4} =: θ

1. Latent Variable Models 
Gaussian Mixture Model : Definition

Can be used as clustering

EM algorith
m
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2. Probabilistic clustering 
Gaussian Mixture Model as a Latent variable model

We want to fit a Gaussian Mixture Model !

π1𝒩(μ1, Σ1) + π2𝒩(μ2, Σ2) + π3𝒩(μ3, Σ3) + π4𝒩(μ4, Σ4)

parameters : , , , θ = {π1, μ1, Σ1 π2, μ2, Σ2 π3, μ3, Σ3 π4, μ4, Σ4}
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2. Probabilistic clustering 
Gaussian Mixture Model as a Latent variable model

We want to fit a Gaussian Mixture Model !
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We assume that this  is generated as follows :x
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𝒩(x |μMLE
soft , ΣMLE

soft )p(x | , θ) =t = 2
μMLE

soft =
∑i xi

∑i p( |x, θ)
t = 2p( |x, θ)

t = 2

t = 2
ΣMLE

soft =
∑i (xi − μMLE

soft ) × (xi − μMLE
soft )T

∑i p( |xi, θ)
t = 2p( |xi, θ)

We assume that this  is generated as follows :x

p(t |θ)

t = 2

p(x | , θ)t = 2

x

1 2



2. Probabilistic clustering 
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STEP 6

2. Probabilistic clustering 
Gaussian Mixture Model : some intuitions for training this model [6/6]

flexible 
probabilistic 
approach to 
clustering 
problem
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2.b. Expectation-Maximization algorithm 
Reminder : Maximum Likelihood Estimation (MLE)

Our aim is to find :  ̂θMLE = arg max
θ

p(x |θ) = arg max
θ

log p(x |θ)
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2.b. Expectation-Maximization algorithm 
EM algorithm : E-step
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θ0

Expectation step : qk+1 = arg max
q∈Family

ℒ(θk, q)

E step : reduce this gap

2.b. Expectation-Maximization algorithm 
EM algorithm : E-step
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Our aim is to find :  ̂θMLE = arg max
θ
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log p(x |θ)

Expectation step : qk+1 = arg max
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And so on … until we reach a local maximum

2.b. Expectation-Maximization algorithm 
EM algorithm



2.b. Expectation-Maximization algorithm 
EM algorithm : more details

    qk+1 = arg max
q∈Family

ℒ(θk, q) ⟺ q(ti) = p(ti |xi, θ)

E-step :

    θk+1 = arg max
θ

ℒ(θ, qk+1) ⟺ θk+1 = arg max
θ

𝔼qk+1[log p(X, T |θ)]

M-step :



    qk+1 = arg max
q∈Family

ℒ(θk, q) ⟺ q(ti) = p(ti |xi, θ)

    θk+1 = arg max
θ

ℒ(θ, qk+1) ⟺ θk+1 = arg max
θ

𝔼qk+1[log p(X, T |θ)]

2.b. Expectation-Maximization algorithm 
EM algorithm : back to GMM

E-step :

M-step :

GMM : for each point we indeed computed q(ti) = p(ti |xi, θ)

GMM : we updated the gaussian parameters with
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t = 2p( |x, θ)

t = 2

which indeed is the M-step of the EM algorithm
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Probabilistic dimensionality reduction and EM-algorithm3
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3. Probabilistic dimensionality reduction 
Dimensionality reduction : reminder

Dimensionality reduction : transformation of data from a high-dimensional space into a low-dimensional space

Why do we care ?

- Avoid curse of dimensionality : 
a high-dimensional data can be dangerous if the data is too sparse 

- Noise reduction : 
In a High-dimensional dataset there might be too much noise. 

- Data visualisation (2D or 3D visualisation) : 
We cannot visualise a high-dimensional data (dimension > 3)

« Visualizing data using t-SNE », JMLR, Laurens et. al, 2008
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3. Probabilistic dimensionality reduction 
Dimensionality reduction : PCA

Dimensionality reduction : transformation of data from a high-dimensional space into a low-dimensional space

Principal Component Analysis (PCA) : Linear approach to dimensionality reduction : the idea is to linearly project 
the high-dimensional data into a low-dimensional data

The two features F1 and F2 have a positive correlation

Combine these two features into one : F

This line corresponds to the eigenvector associated to the greatest eigenvalue of the covariance matrix
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Dimensionality reduction : transformation of data from a high-dimensional space into a low-dimensional space

Principal Component Analysis (PCA) : Linear approach to dimensionality reduction : the idea is to linearly project 
the high-dimensional data into a low-dimensional data

Probabilistic PCA : a probabilistic point of view of PCA X T

T
X

How do we reduce ?

How do we generate ?

p(ti) = 𝒩(ti |0, I2)

      with xi = W ti +b +ϵi ϵi ∼ 𝒩(0,Σ)

p(xi | ti, θ) = …

    xi = W ti +b



3. Probabilistic dimensionality reduction 
Dimensionality reduction : probabilistic PCA (PPCA)

Dimensionality reduction : transformation of data from a high-dimensional space into a low-dimensional space

Principal Component Analysis (PCA) : Linear approach to dimensionality reduction : the idea is to linearly project 
the high-dimensional data into a low-dimensional data

Probabilistic PCA : a probabilistic point of view of PCA X T

T
X

How do we reduce ?

How do we generate ?

p(ti) = 𝒩(ti |0, I2)

      with xi = W ti +b +ϵi ϵi ∼ 𝒩(0,Σ)

p(xi | ti, θ) = 𝒩(Wti + b, Σ)




  

p(x |θ) = ∏
i=1,…,n

p(xi |θ)

= ∏
i=1,…,n

∫ p(xi | ti, θ)p(ti)dti

    xi = W ti +b
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Dimensionality reduction : transformation of data from a high-dimensional space into a low-dimensional space

Principal Component Analysis (PCA) : Linear approach to dimensionality reduction : the idea is to linearly project 
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∫ p(xi | ti, θ)p(ti)dti
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3. Probabilistic dimensionality reduction 
Dimensionality reduction : probabilistic PCA (PPCA)

Dimensionality reduction : transformation of data from a high-dimensional space into a low-dimensional space

Principal Component Analysis (PCA) : Linear approach to dimensionality reduction : the idea is to linearly project 
the high-dimensional data into a low-dimensional data

Probabilistic PCA : a probabilistic point of view of PCA X T

T
X

p(ti) = 𝒩(ti |0, I2)

      with xi = W ti +b +ϵi ϵi ∼ 𝒩(0,Σ)

p(xi | ti, θ) = 𝒩(Wti + b, Σ)




  

p(x |θ) = ∏
i=1,…,n

p(xi |θ)

= ∏
i=1,…,n

∫ p(xi | ti, θ)p(ti)dti

    xi = W ti +b

Normal conjugacy !

How do we reduce ?

How do we generate ? Easy to do EM here !



3. Probabilistic dimensionality reduction 
Dimensionality reduction : probabilistic PCA (PPCA)

Probabilistic PCA : a probabilistic point of view of PCA X T

Some cool things with PPCA : 

- We can fill missing values 

- Hyperparameters tuning 

- We can do mixture of PPCA
« Probabilistic Principal Component Analysis », JMLR, Michael E. Tipping et. al, 1999



Applications and examples : notebook4



Application and examples 
website : https://curiousml.github.io/

TODO



Road map!



Bayesian statistics

Latent variable models

Variational Inference

Causal Inference

1

2

3

4

5

θ
X

P(θ |X) =
P(X, θ)
P(X)

=
P(X |θ) ⋅ P(θ)

P(X)

Bayesian perspective :

Posterior 
distribution

Likelihood
Prior 

distribution

Evidence

parameters

observations

Exemple :  
Naive Bayes classifier, 
Linear regression, ….

Hard to compute !

MAP :

Conjugate distribution

arg max
θ

P(X |θ) ⋅ P(θ)

Pros : 
- exact posterior

Cons : 
- conjugate prior 

maybe inadequate

Oral presentation & 
Extensions

Hidden variable models :

Pros : 
- fewer parameters / 

simpler models 
- hidden variable 

sometimes meaningful 
- clustering / 

dimensionality reduction

Cons : 
- harder to work with 
- requires math 
- only local maximum or 

saddle point 
- EM : the posterior of T 

could be intractable

Exemple :  
GMM, K-means, PCA/PPCA

P(X |θ) = ∑
t∈Tindexes

P(X, T = t |θ)

P(X, T |θ) = P(X |T, θ)P(T |θ)


