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PREREQUISITE

1. Notions of probability & statistics

2. Statistical Learning : 

supervised & unsupervised learning

3. Information theory :  

Entropy, KL-divergence, …

Python

Some « classical » supervised &  
unsupervised models 

THEORY

APPLICATION

ALGORITHM
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1. Introduction to bayesian statistics

Bayesian point of view : online learning

Bayesian

Bayes theorem

P(θ |X) =
P(X |θ) × P(θ)

P(X)

Training 
phase

Inference 
phase

P(θ |Xtrain, ytrain) =
P(ytrain |Xtrain, θ) × P(θ)

P(ytrain |Xtrain)

P(ynew |Xnew, Xtrain, ytrain) = ∫ P(ynew |Xtrain, θ) × P(θ |Xtrain, ytrain)dθ

Can regularize your model when training on your data

Online 
learning Pnew(θ) = P(θ |xnew) =

P(xnew |θ) × Pold(θ)
P(xnew)

PosteriorNew 
prior
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Probabilistic Graphical Model (PGM)

Example :
Y

X1

P(X, Y ) = P(Y |X) × P(X)

X2
… XN

P(X, Y, Z) = P(Z |X, Y ) × P(X, Y )
= P(Z |X, Y ) × P(Y |X) × P(X)
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X Y

Z

X Y
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X
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yi = xT
i θ + ϵi

D = {(x1, y1), …, (xn, yn)}
Scalar notation :

y = XTθ + ϵ

 and  X = (x1, …, xn) y = (y1, …, yn)
Matrix notation :

min
θ

∥θtX − y∥2Reminder : Frequentist linear regression xi ∈ ℝd y1 ∈ ℝ

Proof : MLE for linear regression



Bayesian Linear regression

   with    , D = {(x1, y1), …, (xn, yn)} xi ∈ ℝd yi ∈ ℝ

θ

YnY1

weights

target…
x1 xn

Plate notation
θ

Yi n
xi

Hidden 
(latent) r.v.

Observed 
r.v.

Legend :

Fixed variable

P(θ, yi |xi) = P(yi |θ, xi) × P(θ)
P(yi |θ, xi) = …
P(θ) = …

Scalar notation

P(θ, y |x) = P(y |θ, x) × P(θ)
P(y |θ, x) = …
P(θ) = …

Matrix notation  and  with    , X = (x1, …, xn) y = (y1, …, yn) xi ∈ ℝd yi ∈ ℝ

θ

Y

weights

target

X

2. Probabilistic model

Bayesian linear regression
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Scalar notation
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Bayesian Linear regression

   with    , D = {(x1, y1), …, (xn, yn)} xi ∈ ℝd yi ∈ ℝ

θ

YnY1

weights

target…
x1 xn

Plate notation
θ

Yi n
xi

Hidden 
(latent) r.v.

Observed 
r.v.

Legend :

Fixed variable

P(θ, yi |xi) = P(yi |θ, xi) × P(θ)

Scalar notation

P(θ, y |x) = P(y |θ, x) × P(θ)

Matrix notation  and  with    , X = (x1, …, xn) y = (y1, …, yn) xi ∈ ℝd yi ∈ ℝ

θ

Y

weights

target

X

P(yi |θ, xi) =
P(θ) =

𝒩(yi |θTxi, σ2)
𝒩(θ |0, γ2)

P(y |θ, x) =
P(θ) =

𝒩(y |θTx, σ2In)
𝒩(θ |0, γ2In)

2. Probabilistic model

Bayesian linear regression



2. Probabilistic model

Linear regression
Bayesian Linear regression

θ

Y

x

P(θ, y |X) = P(y |θ, X) × P(θ)

P(y |θ, X) =

P(θ) =

𝒩(y |θT X, σ2In)

𝒩(θ |0, γ2In)

Objective :

min
θ

ℒ(θ) = min
θ

∥θtX − y∥2

Frequentist linear regression

̂θ = arg min
θ

ℒ(θ)

̂θ = (XT X)−1XTy

Objective :



2. Probabilistic model

Linear regression
Bayesian Linear regression

θ

Y

x

P(θ, y |X) = P(y |θ, X) × P(θ)

P(y |θ, X) =

P(θ) =

𝒩(y |θT X, σ2In)

𝒩(θ |0, γ2In)

arg max
θ

P(θ |X, y) = arg max
θ

P(θ, y |X)Objective :

min
θ

ℒ(θ) = min
θ

∥θtX − y∥2

Frequentist linear regression

̂θ = arg min
θ

ℒ(θ)

̂θ = (XT X)−1XTy

Objective :



2. Probabilistic model

Linear regression
Bayesian Linear regression

θ

Y

x

P(θ, y |X) = P(y |θ, X) × P(θ)

P(y |θ, X) =

P(θ) =

𝒩(y |θT X, σ2In)

𝒩(θ |0, γ2In)

arg max
θ

P(θ |X, y) = arg max
θ

P(θ, y |X)Objective :

Theorem : 

There exists  such that :λ ∈ ℝ arg max
θ

P(θ |X, y) = arg min
θ

{∥θtX − y∥2 + λ∥θ∥2}
So by adding a normal prior on the weight we turned this problem into a  regularised problemL2

min
θ

ℒ(θ) = min
θ

∥θtX − y∥2

Frequentist linear regression

̂θ = arg min
θ

ℒ(θ)

̂θ = (XT X)−1XTy

Objective :



2. Probabilistic model

Linear regression
Bayesian Linear regression

θ

Y

x

P(θ, y |X) = P(y |θ, X) × P(θ)

P(y |θ, X) =

P(θ) =

𝒩(y |θT X, σ2In)

𝒩(θ |0, γ2In)

arg max
θ

P(θ |X, y) = arg max
θ

P(θ, y |X)Objective :

Theorem : 

There exists  such that :λ ∈ ℝ arg max
θ

P(θ |X, y) = arg min
θ

{∥θtX − y∥2 + λ∥θ∥2}
So by adding a normal prior on the weight we turned this problem into a  regularised problemL2

Proof : left as an exercice

min
θ

ℒ(θ) = min
θ

∥θtX − y∥2

Frequentist linear regression

̂θ = arg min
θ

ℒ(θ)

̂θ = (XT X)−1XTy

Objective :
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3. Analytical Inference

Reminder of posterior distribution

Posterior distribution

P(θ |X) =
P(X, θ)
P(X)

=
P(X |θ) × P(θ)

P(X)
Posterior Evidence

PriorLikelihood



3. Analytical Inference

Reminder of posterior distribution

Posterior distribution

P(θ |X) =
P(X, θ)
P(X)

=
P(X |θ) × P(θ)

P(X)
Posterior Evidence

PriorLikelihood

Fixed by model Fixed by us

Fixed by data



3. Analytical Inference

Reminder of posterior distribution

Posterior distribution

P(θ |X) =
P(X, θ)
P(X)

=
P(X |θ) × P(θ)

P(X)
Posterior Evidence

PriorLikelihood

Fixed by model Fixed by us

Fixed by data
P(X) = ∫θ

P(X |θ) ⋅ P(θ) ⋅ dθ

HARD TO COMPUTE



3. Analytical Inference

Maximum a posteriori (MAP) : definition & remarks

Remarks

- We have to avoid computing the evidence 
 

- Naive approach : maximum a posteriori ,  
 

 

 
   

- This maximization can be done with 
numerical optimization problem

̂θMAP = arg max
θ { P(θ |X) ⋅ P(θ)

P(X) }
= arg max

θ
P(X |θ) ⋅ P(θ)

Posterior distribution

P(θ |X) =
P(X, θ)
P(X)

=
P(X |θ) × P(θ)

P(X)
Posterior Evidence

PriorLikelihood

Fixed by model Fixed by us

Fixed by data
P(X) = ∫θ

P(X |θ) ⋅ P(θ) ⋅ dθ

HARD TO COMPUTE



3. Analytical Inference

Maximum a posteriori (MAP) : limitations

Remarks

- We have to avoid computing the evidence 
 

- Naive approach : maximum a posteriori ,  
 

 

 
   

- This maximization can be done with 
numerical optimization problem

̂θMAP = arg max
θ { P(θ |X) ⋅ P(θ)

P(X) }
= arg max

θ
P(X |θ) ⋅ P(θ)

Limitations (among many others)

1. in general, not representative of bayesian methods :  is a point estimate like  

- can’t compute credible intervals because it doesn’t return a pdf/pmf (not a bayesian inference) 

2. can’t use online learning : the prior is not well updated 

̂θMAP
̂θMLE

Posterior distribution

P(θ |X) =
P(X, θ)
P(X)

=
P(X |θ) × P(θ)

P(X)
Posterior Evidence

PriorLikelihood

Fixed by model Fixed by us

Fixed by data
P(X) = ∫θ

P(X |θ) ⋅ P(θ) ⋅ dθ

HARD TO COMPUTE



3. Analytical Inference

Maximum a posteriori (MAP) : book

For more theoretical details (and example on analytical inference) :



Conjugate distributions4



4. Conjugate distributions

Conjugate distributions : avoid computing evidence

Posterior distribution

P(θ |X) =
P(X, θ)
P(X)

=
P(X |θ) × P(θ)

P(X)
Posterior Evidence

PriorLikelihood

Fixed by model Fixed by us

Fixed by data



4. Conjugate distributions

Conjugate distributions : avoid computing evidence

Posterior distribution

P(θ |X) =
P(X, θ)
P(X)

=
P(X |θ) × P(θ)

P(X)
Posterior Evidence

PriorLikelihood

Fixed by model Fixed by us

Fixed by data

Remarks

- We have to avoid computing the evidence 
 

- We can choose a convenient prior which 
enable us to compute the posterior : 
 
Conjugate prior



4. Conjugate distributions

Conjugate distributions : avoid computing evidence

Posterior distribution

P(θ |X) =
P(X, θ)
P(X)

=
P(X |θ) × P(θ)

P(X)
Posterior Evidence

PriorLikelihood

Fixed by model Fixed by us

Fixed by data

Remarks

- We have to avoid computing the evidence 
 

- We can choose a convenient prior which 
enable us to compute the posterior : 
 
Conjugate prior

Conjugate prior

 is conjugate to  if the  and  lie in the same family of distributions ( gaussian for example ) P(θ) P(X |θ) P(θ) P(θ |X)



4. Conjugate distributions

Conjugate distributions : avoid computing evidence

Posterior distribution

P(θ |X) =
P(X, θ)
P(X)

=
P(X |θ) × P(θ)

P(X)
Posterior Evidence

PriorLikelihood

Fixed by model Fixed by us

Fixed by data

Remarks

- We have to avoid computing the evidence 
 

- We can choose a convenient prior which 
enable us to compute the posterior : 
 
Conjugate prior

Conjugate prior

 is conjugate to  if the  and  lie in the same family of distributions ( gaussian for example ) P(θ) P(X |θ) P(θ) P(θ |X)

Example

 P(θ |X) =
× P(θ)

P(X)
 𝒩(X |θ, σ2)

 𝒩(θ |μprior, σ2
prior)

 𝒩(θ |μposterior, σ2
posterior)

In the context of a 
gaussian, the prior 
for the mean is a 
gaussian !



4. Conjugate distributions

Limitations

- It computes the exact posterior 

- Easy for online learning

- For some (complex) models, the conjugate prior 
can be inadequate (improper prior) 

- Can be unrealistic (non-informative prior)

Posterior distribution

P(θ |X) =
P(X, θ)
P(X)

=
P(X |θ) × P(θ)

P(X)
Posterior Evidence

PriorLikelihood

Fixed by model Fixed by us

Fixed by data

Remarks

- We have to avoid computing the evidence 
 

- We can choose a convenient prior which 
enable us to compute the posterior : 
 
Conjugate prior



Conjugate distributions : Exercices5



5. Conjugate distributions

Exercices

Exercice (left as an exercice, correction in the next lecture)

Show that 𝒩(θ |x/2,1/2) =
𝒩(x |θ,1) × 𝒩(θ |0,1)

P(x)

show the following equation

pointwise product

Exercice (left as an exercice, correction in the next lecture)

 P(θ |x) =
× P(θ)

P(x)
Ber(x |θ)

 B(θ |αprior, βprior)

 B(θ |αposterior, βposterior)

θn1 ⋅ (1 − θ)n0

 B(θ |n1 + αprior, n0 + βprior)

In the context of a 
Bernoulli distribution, 
the prior is a beta !

Exercice (left as an exercice, correction in the next lecture)

 P(γ |x) =
× P(γ)

P(x)
 𝒩(x |μ, γ−1)

 Γ(γ |αprior, βprior)

 Γ(γ |αposterior, βposterior)

 Γ(γ |αprior + 1/2, βprior + (x − μ)2/2)

In the context of a 
gaussian, the prior 
for the precision is a 
gamma !

show the following equation

If you do these exercices before the next lecture, 
you’ll have bonus points:

- 0.25 pts if only the reasoning is good

- 0.5 pts if only some of them are correct

- 0.75 pts if most of them are correct 
- 1 pts if all of them are correct



Road map!



Bayesian statistics

Latent variable models

Variational Inference

Causal Inference

1

2

3

4

5

P(θ |X) =
P(X, θ)
P(X)

=
P(X |θ) ⋅ P(θ)

P(X)

Bayesian perspective :

Posterior 
distribution

Likelihood
Prior 

distribution

Evidence

θ
X

parameters

observations

Exemple :  
Naive Bayes classifier, 
Linear regression, ….

Hard to compute !

MAP :

Conjugate distribution

arg max
θ

P(X |θ) ⋅ P(θ)

Pros :

- exact posterior

Cons :

- conjugate prior 

maybe inadequate

Oral presentations


