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Inference phase

Aim during training phase : find
: O suchthat V(x,y) e T X ¥, hy(x) = y

Appl : '
Inference x ppﬁy j\ Predict -
phase : '

Observation Probabilistic model Prediction
0 —— > |09 0.1
- « Classical » frequentist point of view 0
0 —_— 0.72 0.28
- Parameter @ is fixed and the data X is random
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Why Bayesian methods ?

. _ _ _ Supervised machine learning
Examples of application of Bayesian Machine Learning

Unsupervised machine learning

Credit card default detection
Bayes theorem

Others using more advanced techniques

Medical diagnosis
Bayes theorem

o0

Spam filtering

Bayesian Neural Network

Patterns in customer dataset

Bayesian Non parametric Clustering (BNC)

Y

Help robots make decision
Bayesian Reinforcement Learning (BRL)

Reconstructing images from noisy images
Bayes theorem + MCMC

Y

Speech emotion recognition

Nonparametric hierarchical neural network (NHNN)

Optimal character recognition (OCR)

&4
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1. Introduction to bayesian statistics
Probability & statistics : basic definitions

Probability Random variable
| Relative frequency of an event in an infinite trials | Discrete variable Probability Mass Function n <
P 0.35 (PMF) .’
P( 01 iIf X=1
X 03 if X=2
(X) = 025 if X=3
0.35 if X =4
1 2 3 4
| Continuous variable Probability Density function ‘ “
f: (PDF)

b
P(X € [a,b]) = Jp(s)ds
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1. Introduction to bayesian statistics
Probability & statistics : basic definitions

Random variable

Probability

l Relative frequency of an event in an infinite trials ’/ ? Discrete variable n ﬁ
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Probability & statistics : basic definitions

‘ Probability Random variable
l Relative frequency of an event in an infinite trials / ? Discrete variable n ﬁ
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Independence ‘ “
; Two random variables X and Y are independent if P _ Usual |
P(X,Y) = P(X)P(Y) | Uniform distributions|
| joint probability marginals
dependency : one dice 'j Conditional probability
PRILD =0 = PEPPEL = 1/6? probability of X given that Y happened
¥ . - | joint
mdependency...tv:lc.) dices : || P(X|Y) = P, Y) robability P(l
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1. Introduction to bayesian statistics

Probability & statistics : Bayes theorem

Conditional probability

| probability of X given that Y happened

Joint
P ( ) probability

P(Y)

PX|Y) =

Conditional Marginal

Chain rule

P(X,, ... X,) = H POGIXy X

k=
i Sum rule
' discrete continuous

P(X) = 2 P(X,Y) P(X) =J P(X,Y)-dY "

Yey

YeY P ]

Bayes theorem

| | X Data

! | @ Parameters

P@|X) =

Posterior

P(X, 0)

P(X)

Likelihood Prior

P(X|0) X P(0)

P(X)

Evidence
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1. Introduction to bayesian statistics
Frequentist VS Bayesian point of view

. Maximum Likelihood Estimation
0 = argmax P(X | 0)

Frequentist ‘

Problems in frequentist estimation :
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Bayesian point of view : training

Trainin

Bayes theorem Q
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Can regularize your model when training on your data



1. Introduction to bayesian statistics

Bayesian point of view : inference
Bayes theorem Q
P(X|60) x P(6)

PO X) =
(@1X) POO)
Training P(é’ ‘ b | ) _ P(}’tmm ‘Xtmin, (9) X P(H) Can regularize your model when training on your data
phase e ytmm P (y train ‘ Xtmin)

P (y new ‘ Xnewa Xtmina Y train) — JP (yn ew ‘Xz‘min’ 9) X P (9 ‘ Xtmim ytmin)dg



1. Introduction to bayesian statistics

Bayesian point of view : online learning
Bayes theorem Q
P(X|0) X P(6)

PO X) =
(@1X) POO)
Training P(é’ ‘ b | ) _ P(}’tmm ‘Xtmin, (9) X P(H) Can regularize your model when training on your data
phase e ytmm P (y train ‘ Xtmin)

In:;irae:ece POy, | X oros Xorains Virain) = J Py . |X. . .0)xPO|X, ..y, .)dO
- P (xne ‘ 9) X P old(g)
IOnll'_‘e P (6 =P0O|x,,) = W
earning Pl )

New Posterior
prior
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2. Probabilistic model
Probabilistic Graphical Model (PGM)

Probabilistic graphical models : analysis using diagrammatic representations of probability distributions

/ \ L—V Nodes : random variables

Bayesian networks Markov random fields (

(Directed graphical models )| (Undirected graphical models) Links : probabilistic relationships

The focus of our course!

Model : joint probability over all variables P(X;, -, Xy) = H P( X | parents(X.) )

®@—@C NS SN
@ NN

P(X,Y) = P(Y|X) X P(X) P(X,Y,Z)=P(Z|X,Y) X P(X,Y) P, X, Xy =PY) || P&x|Y)
= P(Z|X,Y) x P(Y|X) X P(X) i=1...N
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Plates and examples of probabilistic model

Naive Bayes Classifier  pP(y,X,, -, X,) = P(Y) H P(X;|Y)

i=1...,N
target

o
/1N
&b o

X; , X; conditionally
independent given Y



2. Probabilistic model
Plates and examples of probabilistic model

Naive Bayes Classifier  pP(y,X,, -, X,) = P(Y) H P(X;|Y)

i=1...N
target
@ Plate notation @
/ \ Features @
@ @ ©t e @ X; , X; conditionally N

independent given Y
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2. Probabilistic model
Frequentist linear regression

Reminder : Frequentist linear regression  x. € R y, €R

min [|0'X — y||?
0
Scalar notation : Matrix notation :
D — {(XI’YI)a cees (Xn,yn)} X — (xla 9xn) andy — (yla 9yn)
v, =x'0+e¢ y=X"0+¢

Proof : MLE for linear regression

bt (---Yn ;ele FéfR . -
Xz (11)'-.;7‘n)l 9 (g’ 5 ))X / ? . —_—\___ QKP L‘_ .él—;z_ (9"6-(“))1’ [lj_x'rw))
YN '(-( w‘r’" g t) o Vi l l- k‘l«‘frf t)“lb

G-w we sufpofa. ek & rs known

Wty -

Y, . Yo ndsp, YenWlwix:, ") OR o ) PL%,KIQ) = - & dog (zme™) - L. ly-xw) (g=Xw)

pedibood with & 2[6) - Keg

6 = MMAK (ulx ) T <
e = YVpeps T . DO _ o-—'-;[O’Z"’*Z'X”J

olylxd) = pLynrgnl o0 = 1p 12 28 - (XXX

4 A _ o=
I - axp (,é—z[gaox:fw )z) }2(9) ek ® &, ar1l.E
:';n‘. \ 276 ® d >0



2. Probabilistic model
Bayesian linear regression

Bayesian Linear regression

Scalar notation D = {(x;,y,),...,(x,,y,)} with x, € R?,y.€ R

weights

@ @ target

Matrix notation X = (x,...,x,)andy = (y,...,y,) with x; € R?,y, € R

Plate notation

weights

Legend:

| | Hidden Observed
&— F[ixed variable (latent) r.v v

by
@ target
X



2. Probabilistic model
Bayesian linear regression

Bayesian Linear regression

Scalar notaton D = {(x;,y),....(x,,y,)} with x,€ R, y, € R

weights P@0,y;|x;) = P(y;| 0, x;) X P(0)

Plate notation P(yi ‘ 0, xi) —
@ @ PO = ...
target
Matrix notation X = (x;,...,x,)andy = (y,...,y,) With x; € R¢ y, € R
weights
P(0,y|x) = P(y|0,x) X P(0)
l P(y|0,x) = ...
t t —
@ arge PO = ... Legend -
X o— Fixedvariable () (ot v v




2. Probabilistic model
Bayesian linear regression

Bayesian Linear regression

Scalar notaton D = {(x;,y),....(x,,y,)} with x,€ R, y, € R

weights PO, y;|x;) = P(y;| 0, x;) X Pz(g)

Plate notation P(yl. ‘ 0, xl.) — /V(yl- ‘ HTxi, 0] )
@ @ P©) = #(0]0, y°)
target

Matrix notation X = (x,...,x,)andy = (y,...,y,) with x; € R?,y, € R

weights P(,y|x) = P(y|6,x) X P(6)
! P(y|6,x) = N(y|67x, 62L)
(¥) targer P(O) = 4]0, 1) o
l edgenda : |
X e—— Fixed variable Q zlellfcjednet;]r.v. E)Vl:-)served




2. Probabilistic model
Linear regression

Bayesian Linear regression Frequentist linear regression

Objective : min . (0) = min ||0'X — y||?
P(6,y|X) = P(y|6,X) X P(6) ’ in Z(6) = min "X = y|

P(y|0,X) = ¥ (y|0'X, 6°I,) 6 = arg min Z(6)
0

!

@ P(O) = 4 (010, L)
1
X

Objective :

0= X"xX)"1xTy



2. Probabilistic model
Linear regression

Bayesian Linear regression Frequentist linear regression

Objective : min . (0) = min ||0'X — y||?
P(6,y|X) = P(y|6,X) X P(6) ’ in Z(6) = min "X = y|

P(y|0,X) = ¥ (y|0'X, 6°I,) 6 = arg min Z(6)
0

!

@ P(O) = 4 (010, L)
1
X

Objective : arg max P(f|X,y) = arg max P(0,y|X)
0 0

0= X"xX)"1xTy



2. Probabilistic model
Linear regression

Bayesian Linear regression Frequentist linear regression

Objective : min . (0) = min ||0'X — y||?
P(6,y|X) = P(y|6,X) X P(6) ’ in Z(6) = min "X = y|

P(y|0,X) = ¥ (y|0'X, 6°I,) 6 = arg min Z(6)
0

!
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1
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0 0

So by adding a normal prior on the weight we turned this problem into a L, regularised problem



2. Probabilistic model
Linear regression

Bayesian Linear regression Frequentist linear regression

Objective : min . (0) = min ||0'X — y||?
P(6,y|X) = P(y|6,X) X P(6) ’ in Z(6) = min "X = y|

P(y|0,X) = ¥ (y|0'X, 6°I,) 6 = arg min Z(6)
0

!

@ P(O) = 4 (010, L)
1
X

Objective : arg max P(f|X,y) = arg max P(0,y|X)
0 0

0= X"xX)"1xTy

Theorem :
There exists A € R such that: argmax P(0|X,y) = arg min {HHtX —y|I* + /lHé’Hz}
0 0

So by adding a normal prior on the weight we turned this problem into a L, regularised problem

Proof : left as an exercice



° Analytical Inference



3. Analytical Inference
Reminder of posterior distribution

Posterior distribution

Likelihood  Prior
P(X,0) P(X|60)x P(0)
PX) P(X)

Evidence

P@|X) =

Posterior



3. Analytical Inference
Reminder of posterior distribution

Posterior distribution

Fixed by model Fixed by us

"\ Likelihood Prior /

P(X,0) P(X|6) X P(0)
PX) P(X)

Evidence

P@|X) =

Posterior

Fixed by data



3. Analytical Inference
Reminder of posterior distribution

Posterior distribution

Fixed by model Fixed by us

"\ Likelihood Prior /

P(X,0) P(X|6) X P(0)
PX) P(X)

Evidence
HARD TO COMPUTE

P@|X) =

Posterior

Fixed by data

P(X) = J P(X|0) - P©O) - dO
0



3. Analytical Inference
Maximum a posteriori (MAP) : definition & remarks

Posterior distribution Remarks

- We have to avoid computing the evidence

Fixed by model Fixed by us
\ Likelihood Prior / - Nalive approach : maximum a posteriori,
P(X, 60 P(X|0) X PO A PO |X)- P
PO|X) = X.0) _PEIOxFO) eMAP=argmax{ (01X) ()}
P(X) P(X) 0 P(X)
Posterior _
Evidence

= arg max P(X|0) - P(0)
Fixed by data 0

- This maximization can be done with
numerical optimization problem

HARD TO COMPUTE

P(X) = J P(X|6) - P©) - db
0



3. Analytical Inference
Maximum a posteriori (MAP) : limitations

Posterior distribution Remarks

- We have to avoid computing the evidence

Fixed by model Fixed by us
\ Likelihood Prior / - Nalive approach : maximum a posteriori,
P(X, 60 P(X|0) X PO A PO |X)- P
PO|X) = X.0) _PEIOxFO) eMAP=argmax{ (01X) ()}
P(X) P(X) 0 P(X)
Posterior _
Evidence

= arg max P(X|0) - P(0)
Fixed by data 0

- This maximization can be done with
numerical optimization problem

HARD TO COMPUTE

P(X) = J P(X|6) - P©) - db
0

Limitations (among many others)

1. in general, not representative of bayesian methods: é’MA p Is a point estimate like @MLE
- can’t compute credible intervals because it doesn’t return a pdf/pmf (not a bayesian inference)

2. can’t use online learning : the prior is not well updated



3. Analytical Inference
Maximum a posteriori (MAP) : book

For more theoretical details (and example on analytical inference) :

{ avo MACHINE LEARNING
CHRISTOPHER M. BISHOP
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4. Conjugate distributions
Conjugate distributions : avoid computing evidence

Posterior distribution

Fixed by model Fixed by us

"\ Likelihood Prior /

P(X,0) P(X|6) X P(0)
PX) P(X)

Evidence

P@|X) =

Posterior

Fixed by data



4. Conjugate distributions
Conjugate distributions : avoid computing evidence

Posterior distribution Remarks

- We have to avoid computing the evidence

Fixed by model Fixed by us

\ Likelihood Prior / - We can choose a convenient prior which
enable us to compute the posterior :

P(X,0) P(X|0)x PO
P(O]X) = P(X) = P(X) Conjugate prior

Evidence

Posterior

Fixed by data



4. Conjugate distributions
Conjugate distributions : avoid computing evidence

Posterior distribution Remarks

- We have to avoid computing the evidence

Fixed by model Fixed by us

\ Likelihood Prior / - We can choose a convenient prior which
enable us to compute the posterior :

P(X,0) P(X|0)x PO
P(O]X) = P(X) = P(X) Conjugate prior

Evidence

Posterior

Fixed by data

Conjugate prior

P(0) is conjugate to P(X | 0) if the P(0) and P(@| X) lie in the same family of distributions ( gaussian for example )



4. Conjugate distributions
Conjugate distributions : avoid computing evidence

Remarks

Posterior distribution
- We have to avoid computing the evidence

Fixed by model Fixed by us
\ Likelihood Prior / - We can choose a convenient prior which
P(X,0) P(X|0)x P enable us to compute the posterior :
, X
e ) Conjugate prior
P(X) P(X) iugate p
Posterior _
Evidence

Fixed by data

Conjugate prior
P(0) is conjugate to P(X | 0) if the P(0) and P(@| X) lie in the same family of distributions ( gaussian for example )

2
e ) ~ VOl Hprior °p ior) In the context of a
PO|X) = N (X10,07) X P(O) gaussian, the prior
- P(X) for thg mean is a
gaussian !

2
N (‘9 ‘ /’tposterior’ Gposterior)



4. Conjugate distributions
Limitations

Posterior distribution Remarks

- We have to avoid computing the evidence

Fixed by model Fixed by us

\ Likelihood Prior / - We can choose a convenient prior which
enable us to compute the posterior :

P(X,0) P(X|0)x PO
P(O]X) = P(X) = P(X) Conjugate prior

Evidence

Posterior

Fixed by data

9 X

- For some (complex) models, the conjugate prior
can be inadequate (improper prior)

- It computes the exact posterior

- Easy for online learnin .. : : :
y 9 - Can be unrealistic (hon-informative prior)



e Conjugate distributions : Exercices



5. Conjugate distributions
Exercices

Exercice (left as an exercice, correction in the next lecture)

N(x]60,1) X ¥/ (0]0,1)
P(x)

Show that 4 (0| x/2,1/2) =

Exercice (left as an exercice, correction in the next lecture)

i i I'(y|
show the following equation B
ooty = A& X PR
F(}/‘ apOSleriOV’ 15 p0steri0r) / (}/ | X) o P()C)
F(}/‘ Xprior + 172, :Bprior + (x — /’t)z/z)
Exercice (left as an exercice, correction in the next lecture) o™ - (1 = 0)%
show the following equation B(0| a,

Ber(x|0) X P(0) -
B(@ ‘ aposteriOr’ IBPOSterior) / P(Q‘X) - P (X)

B(e ‘ ny + aprior’ y T ﬂprior)

If you do these exercices before the next lecture,
you’ll have bonus points:

- 0.25 pts if only the reasoning is good

- 0.5 pts if only some of them are correct

- 0.75 pts if most of them are correct

- 1 pts if all of them are correct

—>
pointwise product

aprior? ,B prior)
In the context of a
gaussian, the prior
for the precision is a
gamma !

rior? ﬂ prior)

In the context of a
Bernoulli distribution,
the prior is a beta !






Bayesian statistics

=@

Bayesian perspective : - Prior
Likelihood jstribution

P(X,0) P(X|0) - P()

Variational Inference

Latent variable models

PO|X) = =
| P(X) P(X)

Posterior |
distribution Evidence

@ parameters Hard to compute !
X observations \
Exemple : MAP : argmax P(X|8) - P(0)
Naive Bayes classifier, g
Linear regression, ....  Conjugate distribution Causal Inference

Pros :

- exact posterior

Oral presentations




