ECOLE D’INGENIEURS EN INFORMATIQUE

Python & algorithm workshop
Lecture 1 : Integer arithmetic

April 2022 - Francois HU
https://curiousml.github.io/
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1. Integer representation
Base

(Positional) integer representation

Choose a base (or radix) / and an alphabet &/ = {0,1,2,...,/ — 1}

k
The number 7 is written as (nk. . .nznlno)ﬁ = (noﬁo +n B+ .+ nkﬁk) 0= Z nf' | withn € o
i=0 10
Example: base 2 Example: base 10 Example: base 16
< = {0,1} o ={0,1,...,9} g =1{0,1,...9A,B,C,D,E, F}
1010001 =1 x2°+1x2*+1 2271 =2x10°+2x10°+7x 10+ 1 E20F = ---

Euclidean division based algorithm: representation of an integer n in base

input : n Euclidean division

k<0 | L

while 71> 0 do - if (a,d) are integers then there.eX|sts integers (g, r) such that
1 < % a=dxXqg+r with 0<r<|d]
n<«nlp we denote :
k<—k+1 - g =ald the quotient

output : (7;.. -nznﬂ’lo)ﬂ - andr =a%d the remainder



1. Integer representation
Binary digit (bit)

Bit : for a computer, numbers are represented in base 2 and each binary digit is called « bit »

Programming languages such as Java or C/C++:

- An integer is coded on a fixed nhumber of k bits (usually kK = 32 or k = 64)

- So only integers smaller than 2K are represented

- Remark : for these programming languages the arithmetic is modular (mod 2") !

For Python:

- No integer overflow : Python uses a variable (not fixed !) number of bits to represent integers

- Python integers are objects = need for additional fixed number of bits from sys import getsizeof
- The maximum integer representation depends on the memory available n = 1024

size = getsizeof(n)
print(size) # 28 bytes, so 28%8 bits

n = 2%%64
size = getsizeof(n)
print(size) # 36 bytes, so 36x8 bits

n = 2%%288
size = getsizeof(n)
print(size) # 64 bytes, so 64%8 bits

28
36
64



0 Integer addition



2. Integer addition

Naive addition (works only for an arbitrary-precision integers)

Integer addition algorithm:
iﬂpUt T A = (ak_l. . .alao)ﬁ ,

c «— 0

fori=0tok—1do:

S; —a,+b;+c
if 5; > [ then :

c «— 1
S; — 8;—

elsec «< 0

S < C

output : § = (s,.. .stlso)ﬁ

00001100
01001001

01010101

10001100
11001001

10001100
01001001

01010101

11010101

10001100
11110100

01001100

+ 01001001

10000000

10010101






3. Integer multiplication
Long (or grade-school) multiplication

o . Used in Python for
Long multiplication algorithm: #
small numbers

input : A = (a;_;...a19p)g,

1010
P <0
fori=0tok—1do: 1010
T <0 1010
forj=0tok—1do: 0000
T < T+aXb;xp™ 1010
P<P+T 1101110

output : P = (Dy_1...PoP1Po)g

- The multiplication by ,Bi+j is a shift of 1 4+ J positions to the left (adding 1 + j zeros at the right of the integer)

- Algorithm complexity : quadratic with the size of positions 0(k?)



3. Integer multiplication
Divide and conquer

Karatsuba algorithm: #

input: A = (¢_;...a1a)y,

B — (bk—l’ . blbo)ﬁ

if k = 1 then:

else:

P < ay X b,

ky < |k/2| and k; < k — k,

Al < @_..qp and Ay < a; _y...q
By < by_y...bp and By < by _;...b,
Sa «— 1and SH < 1

if Ag > A then D « Ay — A,

else D — A, —Ayand Sa « — 1

if By > B, then E < By — B;and Sb <« — 1
else £ < B, — B,

T < Karatsuba(A,, By, k;)

U « Karatsuba(A, By, k)

V « Karatsuba(D, E, k)
Ve—BaxSbh)yxV+T+U
P—Txp+Vxp>+U

output : P = (py,_;-- -P2P1Po)ﬁ

Used in Python
for big numbers

1. Multiplication « divide and conquer »
Assome Hat &= 2

we can write

H = A Fk/?' + Ao
6:. B' Fklz -+ 60
Theretore

PK@ = (V]‘XG\) Fk‘(’ (H\Xgo +[40Xg()ﬁk/z+iqa)‘ﬂo

Howw%
(H\XEO 4-[40)(@( ) = (Hl‘ﬂa) (BG’EI)‘\' (Ai)‘& )‘l’ Ro % Bo

— jnshead o 4 rmuﬂa# k bifs aymbe
we WV\K— 3 rmvﬂfdl k/zbfk ﬂu/YY)&M

2. Algorithm complexity : 0(k'°220)) ~ o(k!1°%)

Let vs donote “TIR) Huw/mflaxi%
T(k) = 3x T(R[2) + AR (dk oddifims Lomf[lﬁl"y\

2x T(R|2) = 32 T(k[Y) + 3kl
3’“4:( k2! = 3E(RIZ) + 374 k/2"

’”\Q/Laf ore t (E/L){:-l
TUZ) = 3 ‘r(l) -+ [* h 2/2 -|
— 3T 4 24 (3b- &) becowr k=2t
= k192 T() + 24 kﬂoﬁm _2dk  bequmre 3= g1z
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4. Bitwise operations

Masks and shifts a = 42 = 00101010
b = 22 = 00010110
Masks: a&b = 2 = 00000010
- ‘&’ (bitwise and),
- ’|’ (bItWISG Or), a — 42 — OO].O].O].O
- N (bitwise xor) b = 22 = 00010110
can be used to perform Boolean logic on individual bits al b = 62 = 00111110
Shifts:
- ‘>>’ (bitwise right shift) shifts the bits to the right by the number of places provided a = 68 = 01000100
- ‘<<’ (bitwise left shift) shifts the bits to the left by the number of places provided a > 2 = 17 = 00010001
they are commonly used to boost the speed of specific mathematical procedures. a = 42 = 00101010
Can be used to multiply or to divide the first operand by two at the power of the a << 2 = 168 = 10101000

second operand.

Other bitwise boolean operations:
- ‘~7 (bitwise not)
can be used to perform Boolean logic on individual bits



