

Outline

Introduction

Context

Algorithms

Objective : compute quick and precise algorithms

- Numerically speed up the computation process

Representations
Gap between mathematical and computer representations of numbers

- May lead to approximation errors
- Objective : mitigate these errors

Introduction

Context

Algorithms

Objective : compute quick and precise algorithms

- Numerically speed up the computation process

Representations
Gap between mathematical and computer representations of numbers

- May lead to approximation errors
- Objective : mitigate these errors

Example 1

Ariane flight V88 :
Exploded on June 4, 1996 just after lift-off due to the consequence of an overflow.

Example 2

The Patriot Missile :

Failed on February 25, 1991 which resulted in 28 deaths due to poor handling of rounding errors.

Introduction

Context

Algorithms

Objective : compute quick and precise algorithms

- Numerically speed up the computation process

Representations
Gap between mathematical and computer representations of numbers

- May lead to approximation errors
- Objective : mitigate these errors

Example 1

Ariane flight V88 :
Exploded on June 4, 1996 just after lift-off due to the consequence of an overflow.

Example 2

The Patriot Missile :

Failed on February 25, 1991 which resulted in 28 deaths due to poor handling of rounding errors.

Main goal : tradeoff between precision, range and speed.

Introduction

Mathematical representation

Maths

A rational number includes any whole number, fraction, or decimal that ends or repeats

An irrational number is any number that cannot be turned into fraction

Introduction

Mathematical representation

Maths

A rational number includes any whole number, fraction, or decimal that ends or repeats

An irrational number is any number that cannot be turned into fraction

Introduction

Mathematical representation

Maths

A rational number includes any whole number, fraction, or decimal that ends or repeats
\mathbb{R}

Introduction

Computer representation

Maths

A rational number includes any whole number, fraction, or decimal that ends or repeats
\mathbb{R}
An irrational number is any number that cannot be turned into fraction

Introduction

Computer representation

Maths

A rational number includes any whole number, fraction, or decimal that ends or repeats

\mathbb{R}
An irrational number is any number that cannot be turned into fraction

Lecture 1 topics

- integer representation integer arithmetic

1 Integer representation

1. Integer representation

Base

(Positional) integer representation
Choose a base (or radix) β and an alphabet $\mathscr{A}=\{0,1,2, \ldots, \beta-1\}$
The number n is written as $\left(n_{k} \ldots n_{2} n_{1} n_{0}\right)_{\beta}=\left(n_{0} \beta^{0}+n_{1} \beta^{1}+\ldots+n_{k} \beta^{k}\right)_{10}=\left(\sum_{i=0}^{k} n_{i} \beta^{i}\right)_{10}$ with $n_{i} \in \mathscr{A}$

Example: base 2

$\mathscr{A}=\{0,1\}$
$1010001=1 \times 2^{6}+1 \times 2^{4}+1$

Example: base 10

$$
\begin{aligned}
& \mathscr{A}=\{0,1, \ldots, 9\} \\
& 2271=2 \times 10^{3}+2 \times 10^{2}+7 \times 10+1
\end{aligned}
$$

Example: base 16

$$
\mathscr{A}=\{0,1, \ldots, 9, A, B, C, D, E, F\}
$$

$$
E 20 F=\ldots
$$

Euclidean division based algorithm: representation of an integer n in base β

$$
\begin{aligned}
& \text { input: } n \\
& k \leftarrow 0 \\
& \text { while } n>0 \text { do: } \\
& n_{k} \leftarrow n \% \beta \\
& n \leftarrow n / \beta \\
& k \leftarrow k+1 \\
& \text { output : }\left(n_{k} \ldots n_{2} n_{1} n_{0}\right)_{\beta}
\end{aligned}
$$

Euclidean division

if (a, d) are integers then there exists integers (q, r) such that

$$
a=d \times q+r \text { with } 0 \leq r<|d|
$$

we denote :

- $q=a / d$ the quotient
- and $r=a \% d$ the remainder

1. Integer representation

Binary digit (bit)

Bit : for a computer, numbers are represented in base 2 and each binary digit is called « bit »

Programming languages such as Java or C/C++ :

- An integer is coded on a fixed number of k bits (usually $k=32$ or $k=64$)
- So only integers smaller than 2^{k} are represented
- Remark : for these programming languages the arithmetic is modular $\left(\bmod 2^{k}\right)$!

For Python :

- No integer overflow : Python uses a variable (not fixed !) number of bits to represent integers
- Python integers are objects \Longrightarrow need for additional fixed number of bits
- The maximum integer representation depends on the memory available

```
from sys import getsizeof
n = 1024
size = getsizeof(n)
print(size) # 28 bytes, so 28*8 bits
print(size)
n = 2**64
size = getsizeof(n)
print(size) # 36 bytes, so 36*8 bits
10
n = 2**288
2 ~ s i z e ~ = ~ g e t s i z e o f ( n )
print(size) # 64 bytes, so 64*8 bits
```


2. Integer addition

Naïve addition (works only for an arbitrary-precision integers)
Integer addition algorithm:

$$
\begin{aligned}
& \text { input: } A=\left(a_{k-1} \ldots a_{1} a_{0}\right)_{\beta} \text {, } \\
& B=\left(b_{k-1} \ldots b_{1} b_{0}\right)_{\beta} \\
& c \leftarrow 0 \\
& \text { for } i=0 \text { to } k-1 \text { do: } \\
& s_{i} \leftarrow a_{i}+b_{i}+c \\
& \text { if } s_{i} \geq \beta \text { then: } \\
& c \leftarrow 1 \\
& s_{i} \leftarrow s_{i}-\beta \\
& \text { else } c \leftarrow 0 \\
& s_{k} \leftarrow c \\
& \text { output : } S=\left(s_{k} \ldots s_{2} s_{1} s_{0}\right)_{\beta}
\end{aligned}
$$

3. Integer multiplication

Long (or grade-school) multiplication

Long multiplication algorithm:
Used in Python for small numbers

```
input: \(A=\left(a_{k-1} \ldots a_{1} a_{0}\right)_{\beta}\),
    \(B=\left(b_{k-1} \ldots b_{1} b_{0}\right)_{\beta}\)
\(P \leftarrow 0\)
for \(i=0\) to \(k-1\) do :
    \(T \leftarrow 0\)
    for \(j=0\) to \(k-1\) do:
            \(T \leftarrow T+a_{j} \times b_{i} \times \beta^{i+j}\)
    \(P \leftarrow P+T\)
output: \(P=\left(p_{2 k-1} \ldots p_{2} p_{1} p_{0}\right)_{\beta}\)
```

1010
$\times \quad 1011$
1010
1010
0000
1010
1101110

- The multiplication by β^{i+j} is a shift of $i+j$ positions to the left (adding $i+j$ zeros at the right of the integer)
- Algorithm complexity : quadratic with the size of positions $o\left(k^{2}\right)$

3. Integer multiplication

Divide and conquer

Karatsuba algorithm:

Used in Python for big numbers

$$
\begin{array}{r}
\text { input : } A=\left(a_{k-1} \ldots a_{1} a_{0}\right)_{\beta}, \\
B=\left(b_{k-1} \ldots b_{1} b_{0}\right)_{\beta}
\end{array}
$$

if $k=1$ then :

$$
P \leftarrow a_{0} \times b_{0}
$$

else
$k_{0} \leftarrow\lfloor k / 2\rfloor$ and $k_{1} \leftarrow k-k_{0}$
$A_{1} \leftarrow a_{k-1} \ldots a_{k_{0}}$ and $A_{0} \leftarrow a_{k_{0}-1} \ldots a_{0}$
$B_{1} \leftarrow b_{k-1} \ldots b_{k_{0}}$ and $B_{0} \leftarrow b_{k_{0}-1} \ldots b_{0}$
$S a \leftarrow 1$ and $S b \leftarrow 1$
if $A_{0} \geq A_{1}$ then $D \leftarrow A_{0}-A_{1}$
else $D \leftarrow A_{1}-A_{0}$ and $S a \leftarrow-1$
if $B_{0} \geq B_{1}$ then $E \leftarrow B_{0}-B_{1}$ and $S b \leftarrow-1$
else $E \leftarrow B_{1}-B_{0}$
$T \leftarrow \operatorname{Karatsuba}\left(A_{1}, B_{1}, k_{1}\right)$
$U \leftarrow \operatorname{Karatsuba}\left(A_{0}, B_{0}, k_{0}\right)$
$V \leftarrow \operatorname{Karatsuba}\left(D, E, k_{1}\right)$
$V \leftarrow(S a \times S b) \times V+T+U$
$P \leftarrow T \times \beta^{k}+V \times \beta^{k / 2}+U$
output: $P=\left(p_{2 k-1} \ldots p_{2} p_{1} p_{0}\right)_{\beta}$

1. Multiplication «divide and conquer»

Assume that $k=2^{t}$
we can write

$$
\begin{aligned}
& A=A_{1} \beta^{k / 2}+A_{0} \\
& B=B_{1} \beta^{k / 2}+B_{0}
\end{aligned}
$$

Therefore
$A \times B=\left(A_{1} \times B_{1}\right) \beta^{k}+\left(A_{1} \times B_{0}+A_{0} \times B_{1}\right) \beta^{k / 2}+A_{0} \times B_{0}$
However
$\left(A_{1} \times B_{0}+A_{0} \times B_{1}\right)=\left(A_{1}-A_{0}\right)\left(B_{0}-B_{1}\right)+\left(A_{1} \times B_{1}\right)+A_{0} \times B_{0}$
\Rightarrow instead of 1 mult of k bits numbers we have 3 mult of $k / 2$ bits numbers
2. Algorithm complexity : $o\left(k^{\log _{2}(3)}\right) \approx o\left(k^{1.585}\right)$

```
Let us denote \(T(k)\) the complexity
    \(T(k)=3 \times T(k / 2)+\alpha k \quad(\alpha k\) additions complesily)
    \(3 \times T(k / 2)=3^{2} T(k / 4)+3 \alpha k / 2\)
    \(\begin{aligned} & \vdots-1 \\ & \vdots \\ & \left(k / 22^{-1}\right)\end{aligned}=3^{t} T\left(k \mid 2^{t}\right)+3^{t-1} \alpha k / 2^{t-1}\)
Therefore
    \(T(k)=3^{t} T(1)+\alpha k \frac{(3 / 2)^{t}-1}{3 / 2-1}\)
        \(=3^{t} T(1)+2 \alpha\left(3^{t}-k\right)\) because \(k=2^{t}\)
        \(=k^{\log _{2}(3)} T(1)+2 \alpha k^{\log _{2}(3)}-2 \alpha k\) becuse \(3^{t}=k^{\log _{2}(3)}\)
\(\Rightarrow O\left(k^{\log _{2}(3)}\right)\)
```

4 Bitwise operations

4. Bitwise operations

Masks and shifts

a	$=42=00101010$
b	$=22=00010110$
$\mathrm{a} \& \mathrm{~b}$	$=2=00000010$
a	$=42=00101010$
b	$=22=00010110$
$\mathrm{a} \mid \mathrm{b}$	$=62=00111110$

Shifts:

- '>>’ (bitwise right shift) shifts the bits to the right by the number of places provided
- '<<' (bitwise left shift) shifts the bits to the left by the number of places provided
they are commonly used to boost the speed of specific mathematical procedures. Can be used to multiply or to divide the first operand by two at the power of the second operand.

Other bitwise boolean operations:

- '~' (bitwise not)
can be used to perform Boolean logic on individual bits

