

Python & algorithm workshop Lecture 1 : Integer arithmetic

April 2022 - François HU https://curiousml.github.io/

Outline

Introduction Context

Algorithms

Objective : compute quick and precise algorithms

- Numerically **speed** up the computation process

Representations

Gap between *mathematical* and *computer* representations of numbers

- May lead to approximation errors
- Objective : mitigate these errors

Introduction Context

Algorithms

Objective : compute quick and precise algorithms

- Numerically **speed** up the computation process

Example 1

Ariane flight V88 : Exploded on June 4, 1996 just after lift-off due to the consequence of an **overflow**.

Representations

Gap between *mathematical* and *computer* representations of numbers

- May lead to approximation errors
- **Objective** : mitigate these errors

Example 2

The Patriot Missile : Failed on February 25, 1991 which resulted in 28 deaths due to poor handling of rounding errors.

Introduction Context

Algorithms

Objective : compute quick and precise algorithms

- Numerically **speed** up the computation process

Example 1

Ariane flight V88 : Exploded on June 4, 1996 just after lift-off due to the consequence of an **overflow**.

Main goal : tradeoff between precision, range and speed.

Representations

Gap between *mathematical* and *computer* representations of numbers

- May lead to approximation errors
- Objective : mitigate these errors

Example 2

The Patriot Missile : Failed on February 25, 1991 which resulted in 28 deaths due to poor handling of rounding errors.

Introduction Mathematical representation

Maths

A rational number includes any whole number, fraction, or decimal that ends or repeats

R

An irrational number is any number that cannot be turned into fraction

Introduction Mathematical representation

A rational number includes any whole number, fraction, or decimal that ends or repeats

R

An irrational number is any number that cannot be turned into fraction

Introduction Mathematical representation

A rational number includes any whole number, fraction, or decimal that ends or repeats

R

Introduction Computer representation

A rational number includes any whole number, fraction, or decimal that ends or repeats

R

An irrational number is any number that cannot be turned into fraction

Introduction Computer representation

A rational number includes any whole number, fraction, or decimal that ends or repeats

R

An irrational number is any number that cannot be turned into fraction

Lecture 1 topics integer representation integer arithmetic

1. Integer representation Base

(Positional) integer representation

Choose a base (or radix) β and an alphabet $\mathscr{A} = \{0,1\}$

The number *n* is written as $(n_k...n_2n_1n_0)_{\beta} = (n_0\beta^0 + n_1)_{\beta}$

Example: base 2

Example: base 10

$$\mathcal{A} = \{0,1\} \qquad \qquad \mathcal{A} = \{0,1,\dots,9\} \\ 1010001 = 1 \times 2^6 + 1 \times 2^4 + 1 \qquad \qquad 2271 = 2 \times 10^3 + 2 \times 2^6 + 1 \times$$

Euclidean division based algorithm: representation of an integer n in base β

input : n **Euclidean division** $k \leftarrow 0$ while n > 0 do : $n_k \leftarrow n \% \beta$ $n \leftarrow n/\beta$ we denote : $k \leftarrow k + 1$ - q = a/d the **quotient output** : $(n_k ... n_2 n_1 n_0)_{\beta}$ - and r = a % d the **remainder**

$$\{2, \dots, \beta - 1\}$$

$$\{1^{\beta^1} + \dots + n_k \beta^k\}_{10} = \left(\sum_{i=0}^k n_i \beta^i\right)_{10} \text{ with } n_i \in \mathscr{A}$$

Example: base 16

$$\mathscr{A} = \{0, 1, \dots, 9, A, B, C, D, E, F\}$$
$$E20F = \cdots$$

 $10^2 + 7 \times 10 + 1$

if (a, d) are integers then there exists integers (q, r) such that

$$a = d \times q + r$$
 with $0 \le r < |d|$

1. Integer representation Binary digit (bit)

Bit : for a computer, numbers are represented in base 2 and each binary digit is called « bit »

Programming languages such as Java or C/C++ :

- An integer is coded on a fixed number of k bits (usually k = 32 or k = 64)
- So only integers smaller than 2^k are represented
- **Remark :** for these programming languages the arithmetic is <u>modular</u> (mod 2^{k})!

For Python :

- **No integer overflow** : Python uses a **variable** (not fixed !) number of bits to represent integers
- **Python integers are objects** \implies need for additional fixed number of bits
- The maximum integer representation depends on the memory available

```
1 from sys import getsizeof
    n = 1024
    size = getsizeof(n)
    print(size) # 28 bytes, so 28*8 bits
      = 2**64
    size = getsizeof(n)
   print(size) # 36 bytes, so 36*8 bits
10
11 n = 2**288
12 size = getsizeof(n)
13 print(size) # 64 bytes, so 64*8 bits
28
36
64
```


2. Integer addition Naïve addition (works only for an arbitrary-precision integers)

+

Integer addition algorithm:

input : $A = (a_{k-1}...a_1a_0)_{\beta}$, $B = (b_{k-1}...b_1b_0)_{\beta}$ $c \leftarrow 0$ for i = 0 to k - 1 do : $s_i \leftarrow a_i + b_i + c$ if $s_i \ge \beta$ then : $c \leftarrow 1$ $s_i \leftarrow s_i - \beta$ else $c \leftarrow 0$ $s_k \leftarrow c$ output : $S = (s_k...s_2s_1s_0)_{\beta}$

00001100		10001100		01001100
01001001	+	01001001	+	01001001
01010101		11010101		10010101
10001100		10001100		
10001100		10001100		
11001001	+	11110100		
<mark>0</mark> 1010101	1	10000000	-	

3. Integer multiplication Long (or grade-school) multiplication

Long multiplication algorithm:

$$\begin{aligned} \text{input} : A &= (a_{k-1} \dots a_1 a_0)_{\beta}, \\ B &= (b_{k-1} \dots b_1 b_0)_{\beta} \\ P \leftarrow 0 \\ \text{for } i &= 0 \text{ to } k - 1 \text{ do } : \\ T \leftarrow 0 \\ \text{for } j &= 0 \text{ to } k - 1 \text{ do } : \\ T \leftarrow T + a_j \times b_i \times \beta^{i+j} \\ P \leftarrow P + T \\ \text{output} : P &= (p_{2k-1} \dots p_2 p_1 p_0)_{\beta} \end{aligned}$$

Used ir **smal**

- The multiplication by β^{i+j} is a shift of i+j positions to the left (adding i+j zeros at the right of the integer)
- Algorithm complexity : quadratic with the size of positions $o(k^2)$

n Python for I numbers	
	1010
	× 1011
	1010
	1010
	0000
	1010
	1101110

left (adding i + j zeros at the right of the integer) s $o(k^2)$

3. Integer multiplicationDivide and conquer

Karatsuba algorithm:

Used in Python for **big** numbers

$$\begin{aligned} \text{input} : A &= (a_{k-1}...a_1a_0)_{\beta}, \\ B &= (b_{k-1}...b_1b_0)_{\beta} \end{aligned}$$

$$\begin{aligned} \text{if } k &= 1 \text{ then }: \\ P &\leftarrow a_0 \times b_0 \end{aligned}$$

$$\begin{aligned} \text{else }: \\ k_0 &\leftarrow \lfloor k/2 \rfloor \text{ and } k_1 \leftarrow k - k_0 \\ A_1 &\leftarrow a_{k-1}...a_{k_0} \text{ and } A_0 \leftarrow a_{k_0-1}...a_0 \\ B_1 &\leftarrow b_{k-1}...b_{k_0} \text{ and } B_0 \leftarrow b_{k_0-1}...b_0 \\ Sa &\leftarrow 1 \text{ and } Sb \leftarrow 1 \\ \text{ if } A_0 &\geq A_1 \text{ then } D \leftarrow A_0 - A_1 \\ \text{ else } D \leftarrow A_1 - A_0 \text{ and } Sa \leftarrow -1 \\ \text{ if } B_0 &\geq B_1 \text{ then } E \leftarrow B_0 - B_1 \text{ and } Sb \leftarrow -1 \\ \text{ else } E \leftarrow B_1 - B_0 \\ T \leftarrow \text{ Karatsuba}(A_1, B_1, k_1) \\ U \leftarrow \text{ Karatsuba}(D, E, k_1) \\ V \leftarrow (Sa \times Sb) \times V + T + U \\ P \leftarrow T \times \beta^k + V \times \beta^{k/2} + U \\ \text{output} : P &= (p_{2k-1}...p_2p_1p_0)_{\beta} \end{aligned}$$

1. Multiplication « divide and conquer »

Assume that $k = 2^{k}$ we can write $A = A_{1} \beta^{k/2} + A_{0}$ $B = B_{1} \beta^{k/2} + B_{0}$ Therefore $A \times B = (A_{1} \times B_{1}) \beta^{k} + (A_{1} \times B_{0} + A_{0} \times B_{1}) \beta^{k/2} + A_{0} \times B_{0}$ However $(A_{1} \times B_{0} + A_{0} \times B_{1}) = (A_{1} - A_{0}) (B_{0} - B_{1}) + (A_{1} \times B_{1}) + A_{0} \times B_{0}$ \Longrightarrow instead of $1 \mod d k$ bits numbers we have $3 \mod d k$ bits numbers

2. Algorithm complexity : $o(k^{\log_2(3)}) \approx o(k^{1.585})$

Let us denote T(k) the complexity $T(k) = 3 \times T(k/z) + dk$ (dk additions complexity) $3 \times T(k/z) = 3^2 T(k/4) + 3dk/z$ \vdots $3^{t-1}T(k/2^{t-1}) = 3^t T(k/2^t) + 3^{t-1}dk/2^{t-1}$

Therefore $T(k) = 3^{t}T(1) + \lambda k \frac{(3/2)^{t}-1}{3/2-1}$ $= 3^{t}T(1) + 2\lambda (3^{t}-k) \text{ because } k=2^{t}$ $= k^{\log_{2}(5)}T(1) + 2\lambda k^{\log_{2}(3)} - 2\lambda k \text{ because } 3^{t} = k^{\log_{2}(5)}$ $\Rightarrow 0(k^{\log_{2}(3)})$

4. Bitwise operations Masks and shifts

Masks:

- '&' (bitwise and),
- '|' (*bitwise or*),
- '^' (bitwise xor)

can be used to perform Boolean logic on individual bits

Shifts:

- '>>' (bitwise right shift) shifts the bits to the right by the number
- '<<' (bitwise left shift) shifts the bits to the left by the number of

they are commonly used to **boost the speed** of specific mather Can be used to **multiply** or to **divide** the first operand by two a second operand.

Other bitwise boolean operations:

- '~' (bitwise not)

can be used to perform Boolean logic on individual bits

	a	=	42	=	00101010
	b	=	22	=	00010110
a &	t b	=	2	=	0000010
	a	=	42	=	00101010
	b	=	22	=	00010110
a	b	=	62	=	00111110

er of places provided		a	=	68	=	0100010
of places provided	a >	>> 2	=	17	=	0001000
ematical procedures.		a	=	42	=	0010101
at the power of the	a <•	< 2	=	168	=	1010100

