
Python & algorithm workshop
Lecture 1 : Integer arithmetic

April 2022 - François HU
https://curiousml.github.io/

Outline

Python (or at least R)

THEORY

APPLICATION

ALGORITHM

Introduction0

Introduction
Context

Gap between mathematical and computer
representations of numbers

- May lead to approximation errors
- Objective : mitigate these errors

RepresentationsAlgorithms

Objective : compute quick and precise algorithms

- Numerically speed up the computation process

Introduction
Context

Gap between mathematical and computer
representations of numbers

- May lead to approximation errors
- Objective : mitigate these errors

Ariane flight V88 :
Exploded on June 4,
1996 just after lift-off

due to the consequence
of an overflow.

The Patriot Missile :
Failed on February 25,
1991 which resulted in
28 deaths

due to poor handling of
rounding errors.

RepresentationsAlgorithms

Objective : compute quick and precise algorithms

- Numerically speed up the computation process

Example 1 Example 2

Introduction
Context

Gap between mathematical and computer
representations of numbers

- May lead to approximation errors
- Objective : mitigate these errors

Ariane flight V88 :
Exploded on June 4,
1996 just after lift-off

due to the consequence
of an overflow.

The Patriot Missile :
Failed on February 25,
1991 which resulted in
28 deaths

due to poor handling of
rounding errors.

RepresentationsAlgorithms

Objective : compute quick and precise algorithms

- Numerically speed up the computation process

Example 1 Example 2

Main goal : tradeoff between precision, range and speed.

Introduction
Mathematical representation

ℕ
ℤ

ℝ
ℚ

0 1 2 3 ⋯
+∞

Maths

A rational number includes any whole number,
fraction, or decimal that ends or repeats

An irrational number is any number that
cannot be turned into fraction

Introduction
Mathematical representation

ℕ
ℤ

ℝ
ℚ

0 1 2 3 ⋯
+∞−∞

−1−2−3⋯

Maths

A rational number includes any whole number,
fraction, or decimal that ends or repeats

An irrational number is any number that
cannot be turned into fraction

Introduction
Mathematical representation

ℕ
ℤ

ℝ
ℚ

0 1 2 3 ⋯
+∞−∞

−1−2−3⋯

−1/2 1/3

Maths

A rational number includes any whole number,
fraction, or decimal that ends or repeats

Introduction
Computer representation

ℕ
ℤ

ℝ
ℚ

0 1 2 3 ⋯
+∞−∞

−1−2−3⋯

−1/2 1/3 π2

Maths

A rational number includes any whole number,
fraction, or decimal that ends or repeats

An irrational number is any number that
cannot be turned into fraction

Introduction
Computer representation

ℕ
ℤ

ℝ
ℚ

0 1 2 3 ⋯
+∞−∞

−1−2−3⋯

−1/2 1/3 π2

Maths

A rational number includes any whole number,
fraction, or decimal that ends or repeats

An irrational number is any number that
cannot be turned into fraction

Lecture 1 topics

- integer representation

- integer arithmetic

Integer representation1

1. Integer representation
Base

Choose a base (or radix) and an alphabet

The number is written as with

β 𝒜 = {0,1,2,…, β − 1}

n (nk…n2n1n0)β
= (n0β0 + n1β1 + … + nkβk)10

= (
k

∑
i=0

niβi)
10

ni ∈ 𝒜

(Positional) integer representation

Example: base 2 Example: base 10 Example: base 16

𝒜 = {0,1,…,9}𝒜 = {0,1} 𝒜 = {0,1,…,9,A, B, C, D, E, F}

2271 = 2 × 103 + 2 × 102 + 7 × 10 + 11010001 = 1 × 26 + 1 × 24 + 1 E20F = ⋯

E20F = 14 × 163 + 2 × 162 + 15
Euclidean division based algorithm: representation of an integer in base n β

input :

while do :

output :

n
k ← 0

n > 0
nk ← n % β
n ← n/β
k ← k + 1

(nk…n2n1n0)β

Euclidean division

if are integers then there exists integers such that

 with

we denote :

- the quotient

- and the remainder

(a, d) (q, r)
a = d × q + r 0 ≤ r < |d |

q = a/d
r = a % d

1. Integer representation
Binary digit (bit)

- An integer is coded on a fixed number of bits (usually or)

- So only integers smaller than are represented

- Remark : for these programming languages the arithmetic is modular (mod) !

k k = 32 k = 64
2k

2k

Bit : for a computer, numbers are represented in base 2 and each binary digit is called « bit »

Programming languages such as Java or C/C++ :

- No integer overflow : Python uses a variable (not fixed !) number of bits to represent integers

- Python integers are objects need for additional fixed number of bits

- The maximum integer representation depends on the memory available

⟹

For Python :

Integer addition2

2. Integer addition
Naïve addition (works only for an arbitrary-precision integers)

Integer addition algorithm:

input : ,

for to do :

if then :

else

output :

A = (ak−1…a1a0)β
B = (bk−1…b1b0)β

c ← 0
i = 0 k − 1

si ← ai + bi + c
si ≥ β

c ← 1
si ← si − β
c ← 0

sk ← c
S = (sk…s2s1s0)β

Integer multiplication3

3. Integer multiplication
Long (or grade-school) multiplication

Long multiplication algorithm:

- The multiplication by is a shift of positions to the left (adding zeros at the right of the integer)

- Algorithm complexity : quadratic with the size of positions
βi+j i + j i + j

o(k2)

input : ,

for to do :

for to do :

output :

A = (ak−1…a1a0)β
B = (bk−1…b1b0)β

P ← 0
i = 0 k − 1

T ← 0
j = 0 k − 1

T ← T + aj × bi × βi+j

P ← P + T
P = (p2k−1…p2p1p0)β

Used in Python for
small numbers

3. Integer multiplication
Divide and conquer
Karatsuba algorithm:

1. Multiplication « divide and conquer »

input : ,

if then :

else :

 and

 and

 and

 and

if then

else and

if then and

else

Karatsuba

Karatsuba

Karatsuba

output :

A = (ak−1…a1a0)β
B = (bk−1…b1b0)β

k = 1
P ← a0 × b0

k0 ← ⌊k /2⌋ k1 ← k − k0
A1 ← ak−1…ak0

A0 ← ak0−1…a0
B1 ← bk−1…bk0

B0 ← bk0−1…b0
Sa ← 1 Sb ← 1

A0 ≥ A1 D ← A0 − A1
D ← A1 − A0 Sa ← − 1

B0 ≥ B1 E ← B0 − B1 Sb ← − 1
E ← B1 − B0

T ← (A1, B1, k1)
U ← (A0, B0, k0)
V ← (D, E, k1)
V ← (Sa × Sb) × V + T + U
P ← T × βk + V × βk/2 + U

P = (p2k−1…p2p1p0)β

2. Algorithm complexity : o(klog2(3)) ≈ o(k1.585)

Used in Python
for big numbers

Bitwise operations4

4. Bitwise operations
Masks and shifts

Masks:

- ‘&’ (bitwise and),

- ’|’ (bitwise or),

- ’^’ (bitwise xor)  

can be used to perform Boolean logic on individual bits

Shifts:

- ‘>>’ (bitwise right shift) shifts the bits to the right by the number of places provided

- ‘<<’ (bitwise left shift) shifts the bits to the left by the number of places provided 

 
they are commonly used to boost the speed of specific mathematical procedures.
Can be used to multiply or to divide the first operand by two at the power of the
second operand.

Other bitwise boolean operations:
- ‘~’ (bitwise not) 

can be used to perform Boolean logic on individual bits

