Introduction	Dynamic-size batch mode active learning	Exact and approximate fairness in multi-class classification	Conclusion	References

Semi-supervised learning in insurance:

Fairness and Active learning

François HU CREST, ENSAE - Société Générale Insurance

Supervised by : Caroline HILLAIRET (CREST-ENSAE), Romuald ELIE (Université Gustave Eiffel) and Marc JUILLARD (Société Générale Insurance)

CIFRE PhD defense

June 15, 2022

François HU CREST, ENSAE IP Paris

Introduction	Dynamic-size batch mode active learning	Exact and approximate fairness in multi-class classification	Conclusion	References
• 00000 0000000				

Outline

1 Introduction

- Challenge 1: learning with limited labeling budget
- Challenge 2: ensuring algorithmic fairness

2 Dynamic-size batch mode active learning

- BMAL as a Markov decision process
- Numerical evaluation

3 Exact and approximate fairness in multi-class classification

- Exact-fairness
- Approximate-fairness

4 Conclusion

General context: machine learning process

General context: machine learning process

References

General context: examples in insurance

Example 1: Car insurance

- Categorising photos of damaged cars
- Vehicle Telematics
- Aim: ML-based actuarial pricing

Example 2: Regulations

Detection of GDPR compliance in (text) documents

	Age	Sex	Claim
Erwan	31	М	0
Alice	22	F	1
Frank	67	М	0

(images source: https://www.123rf.com)

Example 1: Car insurance

- Categorising photos of damaged cars
 - Label issue: need expert insurers to label
- Vehicle Telematics
 - Privacy issue: can infer some sensible features
- Aim: ML-based actuarial pricing
 - Fairness issue: can reflect social discriminations/prejudices

Example 2: Regulations

- Detection of GDPR compliance in (text) documents
 - Label issue and Fairness issue: need legal professionals to label + imbalanced datasets

	Age	Sex	Claim
Erwan	31	М	0
Alice	22	F	1
Frank	67	М	0

(images source: https://www.123rf.com)

- Challenge 1: learning with limited labeling budget
- Challenge 2: ensuring algorithmic fairness

References

Exact and approximate fairness in multi-class classification Conclusion References

Challenge 1: learning with limited labeling budget

Challenge 1: learning with limited labeling budget

Some ideas and their limits.

Figure 1: Parallel labeling

Costly and time-consuming

Figure 2: Semi-supervised Learning

Produces pseudo-labels

Introduction	Dynamic-size batch mode active learning	Exact and approximate fairness in multi-class classification	Conclusion	References	
0000000000000					
Challenge 1: learning v	with limited labeling budget				
Active lear	ning				

- $H = \{h: \underbrace{\mathcal{X}}_{\text{instance}} \to \underbrace{\mathcal{Y}}_{\text{label}}\} \text{ hypothesis space}$
- $\mathcal{D}^{(\text{train})}$ training set and $\mathcal{D}_{\mathcal{X}}^{(\text{pool})}$ pool set.

Figure 3: Active learning in an offline scenario

Algorithm 1 Outline of active learning (AL) process

Input: $h \in \mathcal{H}$ a base estimator, $\mathcal{D}^{(train)}$ and $\mathcal{D}_{\mathcal{X}}^{(pool)}$

Step 1. Fit *h* on the training set $\mathcal{D}^{(train)}$

Step 2. Given a score I(x, h), we sample:

$$x^* = \underset{x \in \mathcal{D}_{\mathcal{X}}^{(pool)}}{\operatorname{argmax}} \{ l(x, h) \}$$

Example: Entropy-based [Sha48]

$$I(x, h) = -\sum_{k=1}^{K} \mathbb{P}(h(x) = k|x) \log \mathbb{P}(h(x) = k|x)$$

Step 3. If y* is its label then we update:

$$\mathcal{D}^{(train)} = \mathcal{D}^{(train)} \cup \{(x^*, y^*)\}$$

$$\mathcal{D}^{(pool)}_{\mathcal{X}} = \mathcal{D}^{(pool)}_{\mathcal{X}} - \{x^*\}$$

Step 4. Return to step 1 until convergence.

Dynamic-size batch mode active learning Exact and approximate fairness in multi-class classification Conclusion References Introduction 00000000000000

Challenge 1: learning with limited labeling budget

Active learning: experiments on real datasets

Net Promoter Score (NPS) of Société Générale Insurance

- About the data: Net Promoter Score (NPS)
 - Score: client's score of an insurance product (score between 0 and 10);
 - Verbatim: explanation of the score by the client (encoded by doc2vec [LM14]);
 - Sentiment analysis: $\mathcal{Y} = \{\text{score } \leq T, > T\}$, parameter T to be determined.
- Learning model: XGBoost [CG16].
- Batch-mode AL (BMAL): at each AL iteration, sample the top b instances.

Figure 4: BMAL performance with b = 50, 100, 200

Why use BMAL ? [CSC⁺17, GSS19, WZS19]

Dynamic-size batch mode active learning Exact and approximate fairness in multi-class classification Conclusion References Introduction

Challenge 1: learning with limited labeling budget

Active learning: experiments on real datasets

Net Promoter Score (NPS) of Société Générale Insurance

- About the data: Net Promoter Score (NPS)
 - Score: client's score of an insurance product (score between 0 and 10);
 - Verbatim: explanation of the score by the client (encoded by doc2vec [LM14]);
 - Sentiment analysis: $\mathcal{Y} = \{\text{score } \leq T, > T\}$, parameter T to be determined.
- Learning model: XGBoost [CG16].
- Batch-mode AL (BMAL): at each AL iteration, sample the top b instances.

Figure 4: BMAL performance with b = 50, 100, 200

Why use BMAL ? [CSC⁺17, GSS19, WZS19]

- i) useful for parallel labeling
- ii) avoid cost of retraining delays.
- Calibrate b ?
 - Optimal dynamic batch-size
 - Stochastic control & dynamic programming principle

 Introduction
 Dynamic-size batch mode active learning
 Exact and approximate fairness in multi-class classification
 Conclusion
 References

 0000000000
 0000000000
 000000000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 <td

Challenge 2: ensuring algorithmic fairness (in group fairness)

Demographic parity [CKP09, BHN17]

Classifier $h \in \mathcal{H}$,

$$\mathbb{P}\left(h(X,S)=k|S=1\right)=\mathbb{P}\left(h(X,S)=k|S=-1\right)\quad\forall k\in[K]\;.$$

This thesis is about demographic parity (DP).

Introduction

Dynamic-size batch mode active learning

Exact and approximate fairness in multi-class classification Conclusion

Challenge 2: ensuring algorithmic fairness

Challenge 2: some ideas and their limits

Where to reduce algorithmic bias?

Methodologies

- Pre-processing: reduce bias in the data before applying ML models [CKS⁺18, DIKL18]
- In-processing: reduce bias during training ML models [GCGF16, ABD⁺18, Nar18]
- Post-processing: reduce bias after fitting ML models [DHP⁺12, HPS16, KGZ19].

In this thesis: (semi-supervised) post-processing strategy.

François HU CREST, ENSAE IP Paris

Semi-supervised learning in insurance

References

	000000000	00000000	00	
000000000000000000000000000000000000000	00000000	00000000	00	
Introduction	Dynamic-size batch mode active learning	Exact and approximate fairness in multi-class classification	Conclusion	References

Algorithmic fairness in multi-class classification

- Most of the work in algorithmic fairness: binary or regression tasks
- However up to our knowledge, few works on multi-class classification framework
- Most (modern) applications are multi-class tasks (e.g. risk segmentation)

Our contribution for challenge 2: Algorithmic fairness in multi-class tasks [DEHH21]¹

- Optimal fair classifiers under (exact and approximate) DP constraints
- Theoretical fairness guarantees
- Numerical efficiency of the proposed method

François HU CREST, ENSAE IP Paris

¹ Fairness guarantee in multi-class classification. Christophe Denis, Romuald Elie, François Hu, Mohamed Hebiri (submitted in 2022, in review).

Introduction	Dynamic-size batch mode active learning	Exact and approximate fairness in multi-class classification	Conclusion	References
	000000000			

Outline

Introduction

- Challenge 1: learning with limited labeling budget
- Challenge 2: ensuring algorithmic fairness

2 Dynamic-size batch mode active learning

- BMAL as a Markov decision process
- Numerical evaluation

3 Exact and approximate fairness in multi-class classification

- Exact-fairness
- Approximate-fairness

4 Conclusion

Introduction

Dynamic-size batch mode active learning

BMAL as a Markov decision process

Context: SS-BMAL and DS-BMAL procedures

Objective

Find sequence of **AL batch sizes** $(b_t)_t$ with a good trade-off between

- maximizing the model performance
- reducing the number of AL iterations

Static-size BMAL (SS-BMAL) if $b_t = b_0$ for all t; dynamic-size BMAL (DS-BMAL) otherwise

Introduction Dynamic-size batch mode active learning

BMAL as a Markov decision process

Context: SS-BMAL and DS-BMAL procedures

Objective

Find sequence of **AL batch sizes** $(b_t)_t$ with a good trade-off between

- maximizing the model performance
- reducing the number of AL iterations

Static-size BMAL (SS-BMAL) if $b_t = b_0$ for all t; dynamic-size BMAL (DS-BMAL) otherwise

Figure 5: PL and SS-BMAL.

Figure 6: PL and BMAL (boxplot).

Figure 7: PL and naïve DS-BMAL.

BMAL experiments over 15 simulations

- Data: Internet Movie Db (IMDb) [MDP⁺11] containing collection of movie reviews and binary ratings
- Learning model: logistic regression
- State-of-the-art BMAL method: Given an AL batch-size b_t , [WZS19] sample the top b_t instances in terms of representativeness and the certainty score.

Introduction Dynamic-size batch mode active learning Exact and approximate fairness in multi-class classification Conclusion References

BMAL as a Markov decision process

DS-BMAL as a Markov Decision Process (MDP)

State processes: we set the dynamics of the state processes (W_t brownian motion) as

$$\begin{cases} dQ_t = \mu(B_t, b_t) \cdot Q_t(1 - Q_t) \cdot dt + \sigma(B_t, b_t) \cdot Q_t(1 - Q_t) \cdot dW_t & (\text{performance process in [0, 1]}) \\ dB_t = b_t \cdot dt & (\text{number of labeled data in [0, B_{MAX}]}) \end{cases}$$

Optimization problem:

$$V_0 = \sup_{b} \mathbb{E} \left[U(Q_{\tau}) - \int_0^{\tau} C(b_s) ds \right] \quad \text{(value function)}$$

U utility function models user risk-aversion concerning the model labeling-performance

 τ stopping time

 $\tau = \inf \{t \ge 0 \mid B_t = B_{MAX} \text{ or } Q_t = 0 \text{ or } Q_t = 1\}.$

C cost assumed to be a convex function of the batch size *b*.

Parameters:

μ and σ are inferred by numerical analysis

$$\mu(B,b) \propto \frac{b}{B}$$
 and $\sigma(B,b) \propto \frac{b}{B}$

• *C* and *U* are standard power functions: $C(b) \propto b^2$ and $U(Q) = Q^p$, $p \in (0, 1)$.

Introduction Dynamic-size batch mode active learning Exact and approximate fairness in multi-class classification Conclusion References

BMAL as a Markov decision process

DS-BMAL as a Markov Decision Process (MDP)

State processes: we set the dynamics of the state processes (W_t brownian motion) as

 $\begin{cases} dQ_t = \mu(B_t, b_t) \cdot Q_t(1 - Q_t) \cdot dt + \sigma(B_t, b_t) \cdot Q_t(1 - Q_t) \cdot dW_t & (\text{performance process in } [0, 1]) \\ dB_t = b_t \cdot dt & (\text{number of labeled data in } [0, B_{MAX}]) \end{cases}$

Optimization problem:

$$V_0 = \sup_{b} \mathbb{E} \left[U(Q_{\tau}) - \int_0^{\tau} C(b_s) ds \right]$$
 (value function)

U utility function models user risk-aversion concerning the model labeling-performance
 τ stopping time

 $\tau = \inf \{t \ge 0 \mid B_t = B_{MAX} \text{ or } Q_t = 0 \text{ or } Q_t = 1\}.$

C cost assumed to be a convex function of the batch size b.

Parameters:

μ and σ are inferred by numerical analysis

$$\mu(B,b) \propto \frac{b}{B}$$
 and $\sigma(B,b) \propto \frac{b}{B}$

• C and U are standard power functions: $C(b) \propto b^2$ and $U(Q) = Q^p$, $p \in (0, 1)$.

Introduction Dynamic-size batch mode active learning Exact and approximate fairness in multi-class classification Conclusion References

BMAL as a Markov decision process

DS-BMAL as a Markov Decision Process (MDP)

State processes: we set the dynamics of the state processes (W_t brownian motion) as

 $\begin{cases} dQ_t = \mu(B_t, b_t) \cdot Q_t(1 - Q_t) \cdot dt + \sigma(B_t, b_t) \cdot Q_t(1 - Q_t) \cdot dW_t & (\text{performance process in } [0, 1]) \\ dB_t = b_t \cdot dt & (\text{number of labeled data in } [0, B_{MAX}]) \end{cases}$

Optimization problem:

$$V_0 = \sup_{b} \mathbb{E} \left[U(Q_{\tau}) - \int_0^{\tau} C(b_s) ds \right] \quad \text{(value function)}$$

• U utility function models user risk-aversion concerning the model labeling-performance • τ stopping time

 $\tau = \inf \{t \ge 0 \mid B_t = B_{MAX} \text{ or } Q_t = 0 \text{ or } Q_t = 1\}.$

C cost assumed to be a convex function of the batch size b.

Parameters:

• μ and σ are inferred by **numerical analysis**

$$\mu(B,b) \propto \frac{b}{B}$$
 and $\sigma(B,b) \propto \frac{b}{B}$

• C and U are standard power functions: $C(b) \propto b^2$ and $U(Q) = Q^p$, $p \in (0, 1)$.

Introduction	Dynamic-size batch mode active learning	Exact and approximate fairness in multi-class classification	Conclusion	References
	0000000000			
BMAL as a Markov de	cision process			
Optimal fe	edback control			

Dynamic programming principle

Dynamic programming principle (DPP) [Bel58] leads to

(value function)
$$V_t := v(Q_t, B_t) = \sup_{b_S, s \in [t, \tau]} \mathbb{E} \left[v(Q_{t+h}, B_{t+h}) - \int_t^{t+h} \mathcal{C}(b_s) ds \middle| \mathcal{F}_t^W
ight]$$

Hamilton Jacobi Bellman (HJB) equation

HJB equation in the interior of the domain $[0, 1] \times [0, B_{MAX}]$

$$\sup_{\substack{b \ge 0\\b \le B_{MAX} - B}} \underbrace{\left\{ \mu(B, b)Q(1-Q)\frac{\partial v}{\partial Q}(Q, B) + b\frac{\partial v}{\partial B}(Q, B) + \frac{1}{2}\sigma(B, b)^2 Q^2(1-Q)^2\frac{\partial^2 v}{\partial Q^2}(Q, B) - \mathcal{C}(b) \right\}}_{= A(Q, B, b, v)} = 0$$

Boundary conditions:

$$v(0^+, B) = U(0)$$

 $v(1^-, B) = U(1)$
 $v(Q, B_{MAX}) = U(Q)$ for $Q \in (0, 1)$

Introduction	Dynamic-size batch mode active learning	Exact and approximate fairness in multi-class classification	Conclusion	References
	0000000000			
Numerical evaluation				

Numerical resolution

Discretisation

Discretisation of $[0, 1] \times [0, B_{MAX}]$ into grid of $n_Q \times n_B$ nodes and

$$v_{i,j} = v (j\Delta_Q, i\Delta_B)$$

with
$$\Delta_Q = \frac{1}{n_Q}$$
 and $\Delta_B = \frac{B_{MAX}}{n_B}$

Discretisation of *A*:
$$\widehat{A_{i,j}}(b, v_{i-1,j})$$
 by finite difference

Howard algorithm [How60]

Compute $v_{i,j}$ by backward induction. At iteration k:

Step 1. given v^k , find b^{k+1} maximizing

$$\sup_{0 \le b \le B_{MAX} - B} \left\{ \widehat{A_{i,j}}(b, v^k) \right\}$$

Step 2. given b^{k+1} , compute the solution v^{k+1} s.t. $\widehat{A_{i,j}}(b^{k+1}, v^k) = 0$

Introduction	Dynamic-size batch mode active learning	Exact and approximate fairness in multi-class classification	Conclusion	References
	0000000000			
Numerical evaluation				
Numerical	results (1/2)			

b* corresponds to the optimal control

Figure 8: Heatmap of b^* w.r.t. the state process (B, Q). Figure 9: Heatmap of rate $b^* / (B_{MAX} - B)$ w.r.t. (B, Q).

Introduction	Dynamic-size batch mode active learning	Exact and approximate fairness in multi-class classification	Conclusion	References
	000000000			
Numerical evaluation				

Numerical results (2/2)

Figure 10: Comparison between optimal and deterministic strategies with static batch size $b \in \{5, 20, 80\}$. Initially, we set $(B_0, Q_0) = (0, 0.5)$.

Strategies Initial performance	$Q_0 = 0.3$	$Q_0 = 0.5$
Optimized	0.577 ± 0.01	0.756 ± 0.007
Deterministic with $b = 5$	0.574 ± 0.001	0.753 ± 0.011
Deterministic with $b = 20$	0.574 ± 0.0	0.728 ± 0.006
Deterministic with $b = 80$	0.574 ± 0.0	0.727 ± 0.0

Table 1: Value functions as a function of the control strategy. We report the means and standard deviations over 2000 simulations. Coloured values highlight best strategy.

Results

Optimised strategy outperforms deterministic strategies in terms of:

- model quality by labelling less at the beginning of the process
 - reduction of (retraining) delays.
 Indeed this dynamic strategy considerably reduces the number of iterations.

Introduction	Dynamic-size batch mode active learning	Exact and approximate fairness in multi-class classification	Conclusion	References
		00000000		

Outline

Introduction

- Challenge 1: learning with limited labeling budget
- Challenge 2: ensuring algorithmic fairness

2 Dynamic-size batch mode active learning

- BMAL as a Markov decision process
- Numerical evaluation

3 Exact and approximate fairness in multi-class classification

- Exact-fairness
- Approximate-fairness

4 Conclusion

Context: argmax-fairness

Notations

- **Data:** $(\underbrace{feature}_{\chi}, \underbrace{sensitive attribute}_{S}, \underbrace{label}_{Y}) \sim \mathbb{P} \text{ on } \mathcal{X} \times S \times [K]$
- **Distribution** of $S: (\pi_s)_{s \in S}$
- Misclassification risk for a classifier $g : \mathcal{X} \times \{-1, 1\} \rightarrow [K]$:

$$\mathcal{R}(g) := \mathbb{P}\left(g(X,S) \neq Y\right)$$

- **Scores**: for $k \in [K]$, we denote $p_k(X, S) := \mathbb{P}(Y = k | X, S)$
- Bayes classifier minimizes the misclassification risk:

 $g^*(x,s)\in rg\max_k p_k(x,s)\ ,\quad ext{for all }(x,s)\in \mathcal{X} imes \mathcal{S}$

Objective:

$$\begin{array}{c|c} \hline \textbf{Minimizing the risk: } g^* \in \underset{g}{\operatorname{argmin}} \mathcal{R}(g) \\ \hline \textbf{Enforcing fairness: } \underbrace{g^*(X,S) \perp S}_{\mathsf{Demographic Parity (DP)}} (\mathsf{denoted } g^* \in \mathcal{G}_{\mathsf{fair}}) \\ \end{array}$$

Introduction	Dynamic-size batch mode active learning	Exact and approximate fairness in multi-class classification	Conclusion	References
		00000000		
Exact-fairness				

Exact fairness in multi-class classification

Definition (Exact Demographic Parity)

Classifier *g* is exactly fair if for each $k \in [K]$,

$$\mathbb{P}\left(g(X,S)=k|S=1\right)=\mathbb{P}\left(g(X,S)=k|S=-1\right)$$

Equivalently, if we define the following unfairness measure

$$\mathcal{U}(g) := \max_{k \in [K]} |\mathbb{P}\left(g(X,S) = k | S = 1\right) - \mathbb{P}\left(g(X,S) = k | S = -1\right)|$$

Classifier g is exactly fair i.i.f. U(g) = 0.

Optimal exactly fair classifier g_{fair}^* solves

 $\min_{g \in \mathcal{G}_{fair}} \mathcal{R}(g) \qquad (\text{equality constraint !})$

Let us consider its Lagrangian and introduce for $\lambda = (\lambda_1, \dots, \lambda_K) \in \mathbb{R}^K$,

$$\mathcal{R}_{\lambda}(g) := \mathcal{R}(g) + \sum_{k=1}^{K} \lambda_{k} [\mathbb{P}(g(X, S) = k | S = 1) - \mathbb{P}(g(X, S) = k | S = -1)]$$

We call this measure fair-risk.

Introduction	Dynamic-size batch mode active learning	Exact and approximate fairness in multi-class classification	Conclusion	References
		00000000		
Exact-fairness				

Optimal prediction under exact-DP

Continuity assumption

 $t \mapsto \mathbb{P}(p_k(X, S) - p_j(X, S) \le t | S = s)$ considered **continuous**, for any $k, j \in [K]$ and $s \in S$.

Proposition

Under continuity assumption, we define

$$\lambda^* \in \arg\min_{\lambda \in \mathbb{R}^K} \sum_{s \in S} \mathbb{E}_{X|S=s} \left[\max_k \left(\pi_s p_k(X, s) - s \lambda_k \right)
ight].$$

 $\text{Then, } g^*_{\text{fair}} \in \arg\min_{g \in \mathcal{G}_{\text{fair}}} \mathcal{R}(g) \text{ i.f. } f \, g^*_{\text{fair}} \in \arg\min_{g \in \mathcal{G}} \mathcal{R}_{\lambda^*}(g).$

Corollary

Under continuity assumption, an optimal exactly fair classifier is characterized by

$$g^*_{\mathsf{fair}}(x,s) \in rg\max_{k \in [K]} \left(\pi_s
ho_k(x,s) - s \lambda_k^*
ight), \; (x,s) \in \mathcal{X} imes \mathcal{S}$$

Introduction	Dynamic-size batch mode active learning	Exact and approximate fairness in multi-class classification	Conclusion	References
		00000000		
Exact fairnoss				

Semi-supervised post-processing estimator

Theoretical fair solution:

$$\lambda^* \in \arg\min_{\lambda \in \mathbb{R}^K} \sum_{s \in \mathcal{S}} \mathbb{E}_{X \mid \mathcal{S} = s} \left[\max_k \left(\pi_s p_k(X, s) - s \lambda_k \right) \right] \ .$$

$$g^*_{ ext{fair}}(x,s)\in rg\max_k\left(\pi_s p_k(x,s)-s\lambda_k^*
ight), \ \ \ (x,s)\in \mathcal{X} imes \mathcal{S} \ .$$

Empirical fair solution

- Plug-in: Estimation based on independent samples
 - **Labeled data:** $\mathcal{D}_n = (X_i, S_i, Y_i)_{i=1,...,n}$. ζ_k uniform perturbation on [0, u] train estimators $(\hat{p}_k)_k$. Continuity assumption satisfied if $\bar{p}_k(X, S, \zeta_k) := \hat{p}_k(X, S) + \zeta_k$
 - Unlabeled data: for all $s \in S$, X_1^s , ..., $X_{N_S}^s \stackrel{iid}{\sim} \mathbb{P}_{X|S=s}$ empirical frequencies $(\hat{\pi}_s)_{s \in S}$ as estimates of $(\pi_s)_{s \in S}$ (recall that $\pi_s = \mathbb{P}(S = s)$)
- Fair estimator:

$$\hat{\lambda} \in \arg\min_{\lambda} \sum_{s \in \mathcal{S}} \frac{1}{N_s} \sum_{i=1}^{N_s} \left[\max_{k \in [K]} \left(\hat{\pi}_s \bar{p}_k(X_i^s, s, \zeta_{k,i}^s) - s \lambda_k \right) \right]$$

$$\hat{g}(x,s) = \arg \max_{k \in [K]} \left(\hat{\pi}_s \bar{p}_k(x,s,\zeta_k) - s \hat{\lambda}_k
ight)$$

Introduction	Dynamic-size batch mode active learning	Exact and approximate fairness in multi-class classification	Conclusion	References		
		00000000				
Exact-fairness						

Statistical guarantees

Theorem

Universal exact fairness guarantee. There exists constant C > 0 depending only on K and min_{s∈S} π_s, s.t., for any estimators p̂_k,

$$\mathbb{E}\left[\mathcal{U}(\hat{g})
ight] \leq rac{C}{\sqrt{N}}$$

Consistency. Under continuity assumption

$$\mathbb{E}[\mathcal{R}_{\lambda^*}(\hat{g})] - \mathcal{R}_{\lambda^*}(g^*_{\mathsf{fair}}) \leq C\left(\mathbb{E}\left[\|\hat{p} - p\|_1\right] + \sum_{s \in S} \mathbb{E}\left[|\hat{\pi}_s - \pi_s|\right] + \mathbb{E}\left[\mathcal{U}(\hat{g})\right] + u\right)$$

with $\|\hat{p} - p\|_1 = \sum_{k \in [K]} |\hat{p}_k(X, S) - p_k(X, S)|$ (*L*₁-norm b/w estimator and cond.prob.)

Corollary

If $\mathbb{E}[\|\hat{p} - p\|_1] \to 0$ and $u = u_n \to 0$ when $n \to \infty$, we have

$$|\mathbb{E}[\mathcal{R}(\hat{g})] - \mathcal{R}(g^*_{\mathsf{fair}})| o 0, \quad \text{ as } n, N o \infty$$

Under suitable conditions, we have $\mathbb{E}[\mathcal{R}(\hat{g})] \to \mathcal{R}(g^*_{\text{fair}})$ and $\mathbb{E}[\mathcal{U}(\hat{g})] \to 0$ as $n, N \to \infty$.

Introduction	Dynamic-size batch mode active learning	Exact and approximate fairness in multi-class classification	Conclusion	References
		000000000		
Approximate-fairness				

Approximate fair multi-class classification

Definition (ε -Demographic Parity)

Given $\varepsilon > 0$, classifier *g* is ε -fair if for each $k \in [K]$,

$$|\mathbb{P}(g(X,S)=k|S=1)-\mathbb{P}(g(X,S)=k|S=-1)|\leq arepsilon$$
 .

Equivalently, (using unfairness measure) classifier g is ε -fair i.f.f. $\mathcal{U}(g) \leq \varepsilon$.

Optimal exactly fair classifier $g^*_{arepsilon-\mathit{fair}}$ solves

 $\min_{g \in \mathcal{G}_{\varepsilon-fair}} \mathcal{R}(g) \qquad (inequality constraint !)$

Let us consider its **Lagrangian** and introduce for $\lambda^{(1)} = (\lambda_1^{(1)}, \dots, \lambda_K^{(1)}) \in \mathbb{R}_+^K$ and $\lambda^{(2)} = (\lambda_1^{(2)}, \dots, \lambda_K^{(2)}) \in \mathbb{R}_+^K$,

$$\begin{aligned} \mathcal{R}_{\lambda^{(1)},\lambda^{(2)}}(g) &:= \mathcal{R}(g) + \sum_{k=1}^{K} \lambda_{k}^{(1)}[\mathbb{P}(g(X,S) = k | S = 1) - \mathbb{P}(g(X,S) = k | S = -1) - \varepsilon] \\ &+ \sum_{k=1}^{K} \lambda_{k}^{(2)}[\mathbb{P}(g(X,S) = k | S = -1) - \mathbb{P}(g(X,S) = k | S = 1) - \varepsilon] \end{aligned}$$

We call this measure *ɛ*-fair-risk.

François HU CREST, ENSAE IP Paris

Introduction	Dynamic-size batch mode active learning	Exact and approximate fairness in multi-class classification	Conclusion	References
		000000000		
Approximate-fairness				

Optimal prediction under ε-DP

Proposition

Let $H : \mathbb{R}^{2K}_+ \to \mathbb{R}$ be the function

$$\mathcal{H}(\lambda^{(1)},\lambda^{(2)}) = \sum_{s\in\mathcal{S}} \mathbb{E}_{X|S=s} \left[\max_{k} \left(\pi_{s} \rho_{k}(X,s) - s(\lambda_{k}^{(1)} - \lambda_{k}^{(2)}) \right) \right] + \varepsilon \sum_{k=1}^{K} (\lambda_{k}^{(1)} + \lambda_{k}^{(2)}) .$$

 \blacksquare Under continuity assumption, we define $\lambda^{*(1)}, \lambda^{*(2)} \in \mathbb{R}_+^{2K}$ by

$$(\lambda^{*(1)},\lambda^{*(2)}) \in \arg\min_{\substack{(\lambda^{(1)},\lambda^{(2)}) \in \mathbb{R}_+^{2\mathcal{K}}}} H(\lambda^{(1)},\lambda^{(2)})$$

 $\text{Then, } g^*_{\varepsilon-\text{fair}} \in \arg\min_{g \in \mathcal{G}_{\varepsilon}-\text{fair}} \mathcal{R}(g) \text{ iff } g^*_{\varepsilon-\text{fair}} \in \arg\min_{g \in \mathcal{G}} \, \mathcal{R}_{\lambda^*(1), \lambda^*(2)}(g).$

$$\blacksquare \ \text{ In addition, } \ g^*_{\varepsilon-\text{fair}}(x,s) = \arg\max_{k\in[K]} \left(\pi_s \rho_k(x,s) - s(\lambda^{*(1)}_k - \lambda^{*(2)}_k)\right) \quad \forall (x,s) \in \mathcal{X} \times \mathcal{S} \ .$$

Same methodology and extension of exact-fairness:

- i) Plug-in ε fair classifier in a semi-supervised manner with randomization trick.
- ii) **Distribution-free** ε -fairness. Estimator \hat{g}_{ε} : right fairness level $|\mathbb{E}[\mathcal{U}(\hat{g}_{\varepsilon})] \varepsilon| \leq \frac{C}{\sqrt{N}}$.
- iii) **Consistency.** If estimator L_1 -norm consistent then $\mathbb{E}[\mathcal{R}(\hat{g}_{\varepsilon})] \rightarrow \mathcal{R}(g_{\varepsilon-\text{fair}}^*)$ as $n, N \rightarrow \infty$.

Introduction	Dynamic-size batch mode active learning	Exact and approximate fairness in multi-class classification	Conclusion	References
		00000000		
A				

Approximate-fairness

Numerical evaluation: real data

Figure 11: (Accuracy, Unfairness) phase diagrams in binary case

Figure 12: (Accuracy, Unfairness) phase diagrams in multi-class case.

- Competitive unfairness. Exactly-fair algorithm achieves similar performance as the state-of-the-art fair-learn^a
- 2 Competitive accuracy. Achieve a better accuracy on CRIME when we consider RF (.70 vs .65)
- Time complexity. Baseline 3 running time more higher than with our method

^ahttps://fairlearn.org/

Introduction	Dynamic-size batch mode active learning	Exact and approximate fairness in multi-class classification	Conclusion	References
			•0	

Outline

Introduction

- Challenge 1: learning with limited labeling budget
- Challenge 2: ensuring algorithmic fairness

2 Dynamic-size batch mode active learning

- BMAL as a Markov decision process
- Numerical evaluation

3 Exact and approximate fairness in multi-class classification

- Exact-fairness
- Approximate-fairness

4 Conclusion

Introduction	Dynamic-size batch mode active learning	Exact and approximate fairness in multi-class classification	Conclusion	References
			00	

Conclusion

This thesis propose some methods for both challenges

- I learning with limited labeling budget
- ensuring algorithmic fairness

motivated by insurance applications.

Challenge 1-2: fair active learning [EHHJ21] Accuracy analysis Robustness analysis Fairness analysis

Perspective: further works on these challenges

- Challenge 1: Generalizing optimal AL batch-size
- Challenge 2: Multi-label classification with score-fair (instead of exactly-fair).

$$R_2(g) = \mathbb{E}\left[\sum_{k=1}^{K} (\mathbb{1}_{Y=k} - g_k(X, S))^2\right] \text{VS } R(g) = \mathbb{P}(g(X, S) \neq Y)$$

References I	Introduction	Dynamic-size batch mode active learning	Exact and approximate fairness in multi-class classification	Conclusion	References
References I					
	Reference	sl			

- [ABD⁺18] Alekh Agarwal, Alina Beygelzimer, Miroslav Dudík, John Langford, and Hanna Wallach. A reductions approach to fair classification. In *International Conference on Machine Learning*, pages 60–69. PMLR, 2018.
 - [Bel58] Richard Bellman. Dynamic programming and stochastic control processes. Information and control, 1(3):228–239, 1958.
 - [BHN17] Solon Barocas, Moritz Hardt, and Arvind Narayanan. Fairness in machine learning. *Nips tutorial*, 1:2, 2017.
- [CDH+20] E. Chzhen, C. Denis, M. Hebiri, L. Oneto, and M. Pontil. Fair regression with wasserstein barycenters. In Advances in Neural Information Processing Systems, 2020.
 - [CG16] Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. In Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining, pages 785–794, 2016.
 - [CKP09] T. Calders, F. Kamiran, and M. Pechenizkiy. Building classifiers with independency constraints. In *IEEE international conference on Data mining*, 2009.

Introduction	Dynamic-size batch mode active learning	Exact and approximate fairness in multi-class classification	Conclusion	References
Reference	s II			

- [CKS⁺18] Elisa Celis, Vijay Keswani, Damian Straszak, Amit Deshpande, Tarun Kathuria, and Nisheeth Vishnoi. Fair and diverse dpp-based data summarization. In *International Conference on Machine Learning*, pages 716–725. PMLR, 2018.
- [CSC⁺17] Thiago NC Cardoso, Rodrigo M Silva, Sérgio Canuto, Mirella M Moro, and Marcos A Gonçalves. Ranked batch-mode active learning. *Information Sciences*, 379:313–337, 2017.
- [DEHH21] C. Denis, R. Elie, M. Hebiri, and F. Hu. Fairness guarantee in multi-class classification, 2021.
- [DHP+12] C. Dwork, M. Hardt, T. Pitassi, O. Reingold, and R. Zemel. Fairness through awareness. In *Proceedings of the 3rd innovations in theoretical computer science conference*, pages 214–226, 2012.
 - [DIKL18] C. Dwork, N. Immorlica, A. T. Kalai, and M. D. M. Leiserson. Decoupled classifiers for group-fair and efficient machine learning. In *Conference on Fairness, Accountability and Transparency*, 2018.
- [EHHJ21] Romuald Elie, Caroline Hillairet, François Hu, and Marc Juillard. An overview of active learning methods for insurance with fairness appreciation. *arXiv preprint arXiv:2112.09466*, 2021.

Introduction 000000000000000	Dynamic-size batch mode active learning	Exact and approximate fairness in multi-class classification	Conclusion	References
Reference	s III			

- [GCGF16] Gabriel Goh, Andrew Cotter, Maya Gupta, and Michael P Friedlander. Satisfying real-world goals with dataset constraints. *Advances in Neural Information Processing Systems*, 29, 2016.
 - [GSS19] Daniel Gissin and Shai Shalev-Shwartz. Discriminative active learning. *arXiv preprint arXiv:1907.06347*, 2019.
 - [How60] Ronald A Howard. Dynamic programming and markov processes. 1960.
 - [HPS16] M. Hardt, E. Price, and N. Srebro. Equality of opportunity in supervised learning. In *Neural Information Processing Systems*, 2016.
 - [KGZ19] Michael P Kim, Amirata Ghorbani, and James Zou. Multiaccuracy: Black-box post-processing for fairness in classification. In *Proceedings of the 2019 AAAI/ACM Conference on AI, Ethics, and Society*, pages 247–254, 2019.
 - [LM14] Quoc Le and Tomas Mikolov. Distributed representations of sentences and documents. In *International conference on machine learning*, pages 1188–1196. PMLR, 2014.

Introduction	Dynamic-size batch mode active learning	Exact and approximate fairness in multi-class classification	Conclusion	References
Reference	s IV			

- [MDP+11] Andrew L. Maas, Raymond E. Daly, Peter T. Pham, Dan Huang, Andrew Y. Ng, and Christopher Potts. Learning word vectors for sentiment analysis. In Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies, pages 142–150, Portland, Oregon, USA, June 2011. Association for Computational Linguistics.
 - [Nar18] Harikrishna Narasimhan. Learning with complex loss functions and constraints. In *International Conference on Artificial Intelligence and Statistics*, pages 1646–1654. PMLR, 2018.
 - [Sha48] C.E. Shannon. A mathematical theory of communication. *The Bell system technical journal*, 27(3):379–423, 1948.
 - [WZS19] Hanmo Wang, Runwu Zhou, and Yi-Dong Shen. Bounding uncertainty for active batch selection. In *Proceedings of the AAAI conference on artificial intelligence*, volume 33, pages 5240–5247, 2019.

Outline

5 Active learning

6 Synthetic data for argmax-fairness
 Numerical evaluation

7 Score-fairness

Active learning: comparison with passive learning

Figure 14: Active learning (entropy-based sampling, Shannon entropy [Sha48]).

Outline

Synthetic data for argmax-fairness
 Numerical evaluation

7 Score-fairness

François HU CREST, ENSAE IP Paris

Numerical evaluation: synthetic data

Synthetic data: Gaussian mixture model with Bernoulli contamination

Features & Sensitive feature. Consider $c^k \sim U_d(-1, 1)$, and $\mu_1^k, \ldots, \mu_m^k \sim \mathcal{N}_d(0, I_d)$,

$$\begin{aligned} (X|Y=k) &\sim \quad \frac{1}{m}\sum_{i=1}^m \mathcal{N}_d(c^k+\mu_i^k,l_d), \quad \text{for } k\in[K], \\ (S|Y=k) &\sim \quad 2\cdot\mathcal{B}(p)-1, \quad \text{if } k\leq \lfloor K/2 \rfloor, \\ (S|Y=k) &\sim \quad 2\cdot\mathcal{B}(1-p)-1, \quad \text{if } k\geq \lfloor K/2 \rfloor. \end{aligned}$$

Figure 15: Example of synthetic data in binary case. We set d = 2 and m = 1. (1) p = 0.5 (e.g. no unfairness) (2) p = 0.75 (e.g. unfair dataset) (3) p = 1 (e.g. highly unfair dataset)

Numerical evaluation

Numerical evaluation: synthetic data

A Fairness of g is measured via the empirical version of the unfairness measure $\mathcal{U}(g)$.

Figure 16: Empirical distribution of **Random Forest** (RF) score functions for the class Y = 1, conditional to the sensitive feature $S = \pm 1$. (1)-(3) ϵ -fairness with $\epsilon \in \{0, 0.1, 0.15\}$, (4) unfair.

Figure 17: **RF** (Accuracy, Unfairness) phase diagrams for synthetic datasets w.r.t. *Left* the level of bias *p*; *Right* the accuracy-fairness trade-off parameter *ε*. Best trade-off at top-left corner.

Outline

5 Active learning

Synthetic data for argmax-fairness
 Numerical evaluation

7 Score-fairness

Alternative method: score-fairness

Definition (score-fair in demographic parity)

 $f : \mathcal{X} \times \{-1, 1\} \mapsto \mathbb{R}^{K}$ is score-fair in DP if each coordinate f_{k} of f is DP fair,

 $\mathbb{P}(f_k(X,S) \leq t \mid S = -1) = \mathbb{P}(f_k(X,S) \leq t \mid S = 1) \quad \forall k, t \in [K] \times \mathbb{R} \ .$

Consider minimization task

$$f^*_{\text{score}-fair} \in \operatorname{argmin} \{R_2(f) : f \text{ is score-fair}\}$$
.

where
$$R_2(f) = \mathbb{E}\left[\sum_{k=1}^{K} (\mathbb{1}_{Y=k} - f_k(X, S))^2\right]$$
.

Theorem: Optimal prediction under DP score-fairness (L2-risk based) [CDH+20]

[CDH⁺20] identifies the distribution of score-fair classifier $f^*_{score-fair}$ as solutions of a Wasserstein barycenter problem. In particular, $f^*_{score-fair} = (f^*_{sf,1}, \dots, f^*_{sf,K}) \in \mathbb{R}^K$ with

$$f_{\mathsf{s}f,k}^*(x,s) = (\pi_{-s} \cdot \underbrace{\mathcal{Q}_{f_k^*|-s}}_{\mathsf{quantile function}} \circ \underbrace{\mathcal{F}_{f_k^*|s}}_{\mathsf{CDF}}(f_k^*(x,s))$$

Plug-in estimator by estimating for all $s \in S$, π_s , $F_{f_k^*|s}$ and $Q_{f_k^*|s}$.

Numerical evaluation on synthetic data (1/2) : argmax-fair VS score-fair

Figure 18: Empirical distribution of the score functions for the class Y = 1, conditional to $S = \pm 1$.

Figure 19: Emp. distribution of unfair(left), score-fair(middle) and argmax-fair(right) classifiers conditional to $S = \pm 1$

Numerical evaluation on synthetic data (2/2) : argmax-fair VS score-fair

Figure 20: Performance (accuracy, fairness) for unfair, argmax-fair, and score-fair classifiers (30 simulations).

Figure 21: Performance (accuracy, fairness) for unfair, argmax-fair, and score-fair classifiers (30 simulations).

Numerical evaluation: real data

	CRIME, K = 7		LAW, K = 4	
	Accuracy	Unfairness (sum)	Accuracy	Unfairness (sum)
reglog + unfair	0.34 ± 0.02	1.12 ± 0.07	0.43 ± 0.01	0.89 ± 0.05
reglog + score-fair (baseline)	0.33 ± 0.01	0.78 ± 0.09	0.42 ± 0.01	0.09 ± 0.02
reglog + argmax-fair	0.28 ± 0.01	0.26 ± 0.07	0.42 ± 0.01	0.05 ± 0.02
linearSVC + unfair	0.36 ± 0.02	1.12 ± 0.07	0.43 ± 0.01	0.97 ± 0.07
linearSVC + score-fair (baseline)	0.31 ± 0.02	0.88 ± 0.05	0.42 ± 0.01	0.1 ± 0.03
linearSVC + argmax-fair	0.29 ± 0.02	0.25 ± 0.08	0.42 ± 0.01	0.04 ± 0.02
GaussSVC + unfair	0.36 ± 0.02	1.4 ± 0.13	0.43 ± 0.01	1.04 ± 0.04
GaussSVC + score-fair (baseline)	0.35 ± 0.02	1.02 ± 0.07	0.42 ± 0.01	0.16 ± 0.04
GaussSVC + argmax-fair	0.3 ± 0.02	0.22 ± 0.05	0.42 ± 0.01	0.10 ± 0.03
RF + unfair	0.37 ± 0.02	1.02 ± 0.04	0.40 ± 0.01	0.65 ± 0.04
RF + score-fair (baseline)	0.34 ± 0.02	0.67 ± 0.06	0.39 ± 0.01	0.11 ± 0.05
RF + argmax-fair	0.3 ± 0.02	0.33 ± 0.11	0.39 ± 0.01	0.07 ± 0.02

Table 2: (accuracy & unfairness) in multi-class tasks over 30 repetitions. Colored values highlight fairness.

Results

- **argmax-fair** procedure outperforms **unfair** and **score-fair** approaches.
- Provide optimal fair classification rule under DP constraint.
- Our approach can be applied on top of any probabilistic base estimator.