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General context: machine learning process

Given these conditions ...

Big data

+

Good-quality data

Labeled data

Unbiased data

... we (may) have:

Accurate prediction

Robust prediction

Unbiased prediction
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General context: examples in insurance

Example 1: Car insurance

Categorising photos of damaged cars

Label issue: need expert insurers to label

Vehicle Telematics

Privacy issue: can infer some sensible features

Aim: ML-based actuarial pricing

Fairness issue: can reflect social discriminations/prejudices

Example 2: Regulations

Detection of GDPR compliance in (text) documents

Label issue and Fairness issue:
need legal professionals to label + imbalanced datasets

Age Sex Claim

Erwan 31 M 0
Alice 22 F 1
Frank 67 M 0

(images source: https://www.123rf.com)

Challenge 1: learning with limited labeling budget

Challenge 2: ensuring algorithmic fairness
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Challenge 1: learning with limited labeling budget

Challenge 1: learning with limited labeling budget

Some ideas and their limits.

Figure 1: Parallel labeling

Costly and time-consuming

Figure 2: Semi-supervised Learning

Produces pseudo-labels
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Challenge 1: learning with limited labeling budget

Active learning

H = {h : X︸︷︷︸
instance

→ Y︸︷︷︸
label

} hypothesis space

D(train) training set and D(pool)
X pool set.

Figure 3: Active learning in an offline scenario

Algorithm 1 Outline of active learning (AL) process

Input: h ∈ H a base estimator, D(train) and D(pool)
X

Step 1. Fit h on the training set D(train)

Step 2. Given a score I(x, h), we sample:

x∗ = argmax

x∈D(pool)
X

{I(x, h)}

Example: Entropy-based [Sha48]

I(x, h) = −
K∑

k=1
P(h(x) = k|x) log P(h(x) = k|x)

Step 3. If y∗ is its label then we update:

D(train) = D(train) ∪ {(x∗
, y∗)}

D(pool)
X = D(pool)

X − {x∗}

Step 4. Return to step 1 until convergence.
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Challenge 1: learning with limited labeling budget

Active learning: experiments on real datasets

Net Promoter Score (NPS) of Société Générale Insurance

About the data: Net Promoter Score (NPS)

Score: client’s score of an insurance product (score between 0 and 10);
Verbatim: explanation of the score by the client (encoded by doc2vec [LM14]);
Sentiment analysis: Y = {score ≤ T , > T}, parameter T to be determined.

Learning model: XGBoost [CG16].

Batch-mode AL (BMAL): at each AL iteration, sample the top b instances.

Figure 4: BMAL performance with b = 50, 100, 200

Why use BMAL ? [CSC+17, GSS19, WZS19]

i) useful for parallel labeling
ii) avoid cost of retraining delays.

Calibrate b ?
Optimal dynamic batch-size
Stochastic control
& dynamic programming principle
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Challenge 2: ensuring algorithmic fairness

Challenge 2: ensuring algorithmic fairness (in group fairness)

Data: (feature︸ ︷︷ ︸
X

, sensitive attribute︸ ︷︷ ︸
S

, label︸ ︷︷ ︸
Y

) ∼ P on X ×S × [K ]. Consider S = {−1,+1}.

Demographic parity [CKP09, BHN17]

Classifier h ∈ H,

P (h(X , S) = k|S = 1) = P (h(X , S) = k|S = −1) ∀k ∈ [K ] .

This thesis is about demographic parity (DP).
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Challenge 2: ensuring algorithmic fairness

Challenge 2: some ideas and their limits

Where to reduce algorithmic bias?

Modify the dataset Time complexity

Methodologies

Pre-processing: reduce bias in the data before applying ML models [CKS+18, DIKL18]

In-processing: reduce bias during training ML models [GCGF16, ABD+18, Nar18]

Post-processing: reduce bias after fitting ML models [DHP+12, HPS16, KGZ19].

In this thesis: (semi-supervised) post-processing strategy.
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Challenge 2: ensuring algorithmic fairness

Algorithmic fairness in multi-class classification

Most of the work in algorithmic fairness: binary or regression tasks

However up to our knowledge, few works on multi-class classification framework

Most (modern) applications are multi-class tasks (e.g. risk segmentation)

Our contribution for challenge 2: Algorithmic fairness in multi-class tasks [DEHH21]1

Optimal fair classifiers under (exact and approximate) DP constraints

Theoretical fairness guarantees

Numerical efficiency of the proposed method

1Fairness guarantee in multi-class classification. Christophe Denis, Romuald Elie, François Hu, Mohamed Hebiri
(submitted in 2022, in review).
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BMAL as a Markov decision process

Context: SS-BMAL and DS-BMAL procedures

Objective
Find sequence of AL batch sizes (bt )t with a good trade-off between

maximizing the model performance

reducing the number of AL iterations

Static-size BMAL (SS-BMAL) if bt = b0 for all t ; dynamic-size BMAL (DS-BMAL) otherwise

Figure 5: PL and SS-BMAL. Figure 6: PL and BMAL (boxplot). Figure 7: PL and naïve DS-BMAL.

BMAL experiments over 15 simulations

Data: Internet Movie Db (IMDb) [MDP+11] containing collection of movie reviews and binary ratings

Learning model: logistic regression

State-of-the-art BMAL method: Given an AL batch-size bt , [WZS19] sample the top bt instances in terms of
representativeness and the certainty score.
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BMAL as a Markov decision process

DS-BMAL as a Markov Decision Process (MDP)

State processes: we set the dynamics of the state processes (Wt brownian motion) as{
dQt = µ(Bt , bt ) · Qt (1 − Qt ) · dt + σ(Bt , bt ) · Qt (1 − Qt ) · dWt (performance process in [0, 1])
dBt = bt · dt (number of labeled data in [0, BMAX] )

Optimization problem:

V0 = sup
b

E

[
U(Qτ ) −

∫ τ

0
C(bs)ds

]
(value function)

U utility function models user risk-aversion concerning the model labeling-performance
τ stopping time

τ = inf {t ≥ 0 | Bt = BMAX or Qt = 0 or Qt = 1} .

C cost assumed to be a convex function of the batch size b.

Parameters:

µ and σ are inferred by numerical analysis

µ(B, b) ∝
b
B

and σ(B, b) ∝
b
B

C and U are standard power functions: C(b) ∝ b2 and U(Q) = Qp , p ∈ (0, 1).
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BMAL as a Markov decision process

Optimal feedback control

Dynamic programming principle

Dynamic programming principle (DPP) [Bel58] leads to

(value function) Vt := v(Qt , Bt ) = sup
bs, s∈[t,τ ]

E

[
v(Qt+h, Bt+h) −

∫ t+h

t
C(bs)ds

∣∣∣∣FW
t

]

Hamilton Jacobi Bellman (HJB) equation
HJB equation in the interior of the domain [0, 1] × [0, BMAX ]

sup
b≥0

b≤BMAX −B

{
µ(B, b)Q(1 − Q)

∂v

∂Q
(Q, B) + b

∂v

∂B
(Q, B) +

1

2
σ(B, b)2Q2(1 − Q)2

∂2v

∂Q2
(Q, B) − C(b)

}
︸ ︷︷ ︸

= A(Q,B,b,v)

= 0

Boundary conditions:

v(0+
, B) = U(0)

v(1−
, B) = U(1)

v(Q, BMAX) = U(Q) for Q ∈ (0, 1)
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Numerical evaluation

Numerical resolution

Discretisation

Discretisation of [0, 1] × [0, BMAX] into grid of nQ × nB
nodes and

vi,j = v (j∆Q , i∆B)

with ∆Q =
1

nQ
and ∆B =

BMAX

nB

Discretisation of A: Âi,j (b, vi−1,j ) by finite difference

Howard algorithm [How60]

Compute vi,j by backward induction. At iteration k :

Step 1. given vk , find bk+1 maximizing

sup
0≤b≤BMAX −B

{
Âi,j (b, vk )

}
Step 2. given bk+1, compute the solution vk+1 s.t. Âi,j (bk+1, vk ) = 0
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Numerical evaluation

Numerical results (1/2)

b∗ corresponds to the optimal control

Figure 8: Heatmap of b∗ w.r.t. the state process (B, Q). Figure 9: Heatmap of rate b∗/(BMAX − B) w.r.t. (B, Q).
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Numerical evaluation

Numerical results (2/2)

Figure 10: Comparison between optimal and deterministic strategies with static
batch size b ∈ {5, 20, 80}. Initially, we set (B0, Q0) = (0, 0.5).

Strategies | Initial performance Q0 = 0.3 Q0 = 0.5
Optimized 0.577 ± 0.01 0.756 ± 0.007
Deterministic with b = 5 0.574 ± 0.001 0.753 ± 0.011
Deterministic with b = 20 0.574 ± 0.0 0.728 ± 0.006
Deterministic with b = 80 0.574 ± 0.0 0.727 ± 0.0

Table 1: Value functions as a function of the control strategy. We report the means
and standard deviations over 2000 simulations. Coloured values highlight best
strategy.

Results
Optimised strategy
outperforms deterministic
strategies in terms of:

model quality by
labelling less at the
beginning of the
process

reduction of
(retraining) delays.
Indeed this dynamic
strategy considerably
reduces the number of
iterations.

François HU CREST, ENSAE IP Paris Semi-supervised learning in insurance June 15, 2022 23 / 34



Introduction Dynamic-size batch mode active learning Exact and approximate fairness in multi-class classification Conclusion References

Outline

1 Introduction
Challenge 1: learning with limited labeling budget
Challenge 2: ensuring algorithmic fairness

2 Dynamic-size batch mode active learning
BMAL as a Markov decision process
Numerical evaluation

3 Exact and approximate fairness in multi-class classification
Exact-fairness
Approximate-fairness

4 Conclusion

François HU CREST, ENSAE IP Paris Semi-supervised learning in insurance June 15, 2022 24 / 34



Introduction Dynamic-size batch mode active learning Exact and approximate fairness in multi-class classification Conclusion References

Context: argmax-fairness

Notations

Data: (feature︸ ︷︷ ︸
X

, sensitive attribute︸ ︷︷ ︸
S

, label︸ ︷︷ ︸
Y

) ∼ P on X × S × [K ]

Distribution of S: (πs)s∈S

Misclassification risk for a classifier g : X × {−1, 1} → [K ]:

R(g) := P (g(X ,S) ̸= Y )

Scores: for k ∈ [K ], we denote pk (X ,S) := P (Y = k |X ,S)

Bayes classifier minimizes the misclassification risk:

g∗(x , s) ∈ argmax
k

pk (x , s) , for all (x , s) ∈ X × S

Objective:
Minimizing the risk: g∗ ∈ argmin

g
R(g)

Enforcing fairness: g∗(X ,S) ⊥⊥ S︸ ︷︷ ︸
Demographic Parity (DP)

(denoted g∗ ∈ Gfair )
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Exact-fairness

Exact fairness in multi-class classification

Definition (Exact Demographic Parity)

Classifier g is exactly fair if for each k ∈ [K ],

P (g(X ,S) = k |S = 1) = P (g(X ,S) = k |S = −1)

Equivalently, if we define the following unfairness measure

U(g) := max
k∈[K ]

|P (g(X ,S) = k |S = 1)− P (g(X ,S) = k |S = −1)|

Classifier g is exactly fair i.i.f. U(g) = 0.

Optimal exactly fair classifier g∗
fair solves

min
g∈Gfair

R(g) (equality constraint !)

Let us consider its Lagrangian and introduce for λ = (λ1, . . . , λK ) ∈ RK ,

Rλ(g) := R(g) +
K∑

k=1

λk [P (g(X ,S) = k |S = 1)− P (g(X ,S) = k |S = −1)]

We call this measure fair-risk.
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Introduction Dynamic-size batch mode active learning Exact and approximate fairness in multi-class classification Conclusion References

Exact-fairness

Optimal prediction under exact-DP

Continuity assumption
t 7→ P(pk (X , S) − pj (X , S) ≤ t|S = s) considered continuous, for any k, j ∈ [K ] and s ∈ S.

Proposition

Under continuity assumption, we define

λ∗ ∈ arg min
λ∈RK

∑
s∈S

EX |S=s

[
max

k
(πspk (X , s)− sλk )

]
.

Then, g∗
fair ∈ argming∈Gfair R(g) i.f.f g∗

fair ∈ argming∈G Rλ∗ (g).

Corollary

Under continuity assumption, an optimal exactly fair classifier is characterized by

g∗
fair (x , s) ∈ arg max

k∈[K ]
(πspk (x , s)− sλ∗

k ) , (x , s) ∈ X × S.

François HU CREST, ENSAE IP Paris Semi-supervised learning in insurance June 15, 2022 27 / 34



Introduction Dynamic-size batch mode active learning Exact and approximate fairness in multi-class classification Conclusion References

Exact-fairness

Semi-supervised post-processing estimator

Theoretical fair solution:

λ
∗ ∈ arg min

λ∈RK

∑
s∈S

EX|S=s

[
max

k
(πspk (X , s) − sλk )

]
.

g∗
fair(x, s) ∈ arg max

k

(
πspk (x, s) − sλ∗

k
)
, (x, s) ∈ X × S .

Empirical fair solution

Plug-in: Estimation based on independent samples

Labeled data: Dn = (Xi , Si , Yi )i=1,...,n. ζk uniform perturbation on [0, u]
train estimators (p̂k )k . Continuity assumption satisfied if p̄k (X , S, ζk ) := p̂k (X , S) + ζk

Unlabeled data: for all s ∈ S, X s
1 , . . . , X s

Ns
iid∼ PX|S=s

empirical frequencies (π̂s)s∈S as estimates of (πs)s∈S (recall that πs = P(S = s))

Fair estimator:

λ̂ ∈ arg min
λ

∑
s∈S

1
Ns

Ns∑
i=1

[
max
k∈[K ]

(
π̂s p̄k (X

s
i , s, ζs

k,i ) − sλk

)]

ĝ(x, s) = arg max
k∈[K ]

(
π̂s p̄k (x, s, ζk ) − sλ̂k

)
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Exact-fairness

Statistical guarantees

Theorem

Universal exact fairness guarantee. There exists constant C > 0 depending only on K and
mins∈S πs , s.t., for any estimators p̂k ,

E [U(ĝ)] ≤
C
√

N

Consistency. Under continuity assumption

E[Rλ∗ (ĝ)] − Rλ∗ (g∗
fair ) ≤ C

E [∥p̂ − p∥1] +
∑
s∈S

E [|π̂s − πs|] + E [U(ĝ)] + u


with ∥p̂ − p∥1 =

∑
k∈[K ] |p̂k (X , S) − pk (X , S)| (L1-norm b/w estimator and cond.prob.)

Corollary

If E [∥p̂ − p∥1] → 0 and u = un → 0 when n → ∞, we have

|E[R(ĝ)] − R(g∗
fair )| → 0, as n, N → ∞

Under suitable conditions, we have E[R(ĝ)] → R(g∗
fair ) and E[U(ĝ)] → 0 as n, N → ∞.
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Approximate-fairness

Approximate fair multi-class classification

Definition (ε-Demographic Parity)

Given ε > 0, classifier g is ε-fair if for each k ∈ [K ],

|P (g(X ,S) = k |S = 1)− P (g(X ,S) = k |S = −1)| ≤ ε .

Equivalently, (using unfairness measure) classifier g is ε-fair i.f.f. U(g) ≤ ε.

Optimal exactly fair classifier g∗
ε−fair solves

min
g∈Gε−fair

R(g) (inequality constraint !)

Let us consider its Lagrangian and introduce for λ(1) = (λ
(1)
1 , . . . , λ

(1)
K ) ∈ RK

+ and

λ(2) = (λ
(2)
1 , . . . , λ

(2)
K ) ∈ RK

+,

Rλ(1),λ(2) (g) := R(g) +
K∑

k=1

λ
(1)
k [P (g(X ,S) = k |S = 1)− P (g(X ,S) = k |S = −1)− ε]

+
K∑

k=1

λ
(2)
k [P (g(X ,S) = k |S = −1)− P (g(X ,S) = k |S = 1)− ε] .

We call this measure ε-fair-risk.
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Approximate-fairness

Optimal prediction under ε-DP

Proposition
Let H : R2K

+ → R be the function

H(λ(1)
, λ

(2)) =
∑
s∈S

EX|S=s

[
max

k

(
πspk (X , s) − s(λ(1)

k − λ
(2)
k )

)]
+ ε

K∑
k=1

(λ
(1)
k + λ

(2)
k ) .

Under continuity assumption, we define λ∗(1), λ∗(2) ∈ R2K
+ by

(λ∗(1)
, λ

∗(2)) ∈ arg min
(λ(1),λ(2))∈R2K

+

H(λ(1)
, λ

(2)) .

Then, g∗
ε−fair ∈ arg ming∈Gε−fair R(g) iff g∗

ε−fair ∈ arg ming∈G R
λ∗(1),λ∗(2) (g).

In addition, g∗
ε−fair (x, s) = arg max

k∈[K ]

(
πspk (x, s) − s(λ∗(1)

k − λ
∗(2)
k )

)
∀(x, s) ∈ X × S .

Same methodology and extension of exact-fairness:

i) Plug-in ε fair classifier in a semi-supervised manner with randomization trick.

ii) Distribution-free ε-fairness. Estimator ĝε: right fairness level |E[U(ĝε)] − ε| ≤ C√
N

.

iii) Consistency. If estimator L1-norm consistent then E [R(ĝε)] → R(g∗
ε−fair ) as n, N → ∞.
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Approximate-fairness

Numerical evaluation: real data

Figure 11: (Accuracy, Unfairness) phase diagrams in binary case

Figure 12: (Accuracy, Unfairness) phase diagrams in multi-class case.

Models & Datasets

Datasets: CRIME, LAW
and STUDENTS.

models: logistic regression
(reglog) and RF

Results

1 Competitive unfairness.
Exactly-fair algorithm
achieves similar
performance as the
state-of-the-art fair-learna

2 Competitive accuracy.
Achieve a better accuracy
on CRIME when we
consider RF (.70 vs .65)

3 Time complexity. Baseline
running time more higher
than with our method.

ahttps://fairlearn.org/
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Conclusion

This thesis propose some methods for both challenges
1 learning with limited labeling budget
2 ensuring algorithmic fairness

motivated by insurance applications.

Challenge 1-2: fair active learning [EHHJ21]

Accuracy analysis

Robustness analysis

Fairness analysis

Perspective: further works on these challenges

Challenge 1: Generalizing optimal AL batch-size

Challenge 2: Multi-label classification with score-fair (instead of exactly-fair).

R2(g) = E

[ K∑
k=1

(1Y=k − gk (X ,S))2

]
VS R(g) = P(g(X ,S) ̸= Y )
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Active learning: comparison with passive learning

Empirical risk minimization (ERM)

(Misclassification) Risk:
R(h) = P(h(x) ̸= y);

Empirical risk:
R̂n(h) = 1

n
∑n

i=1 1 (h(xi ) ̸= yi );
ERM:

ĥ = argmin
h∈H

R̂n(h).

Figure 13: Passive learning (random sampling)

Figure 14: Active learning (entropy-based sampling, Shannon entropy [Sha48]).
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Numerical evaluation: synthetic data

Synthetic data: Gaussian mixture model with Bernoulli contamination
Features & Sensitive feature. Consider ck ∼ Ud (−1, 1), and µk

1 , . . . , µ
k
m ∼ Nd (0, Id ),

(X |Y = k) ∼
1

m

m∑
i=1

Nd (c
k + µ

k
i , Id ), for k ∈ [K ],

(S|Y = k) ∼ 2 · B(p) − 1, if k ≤ ⌊K/2⌋ ,

(S|Y = k) ∼ 2 · B(1 − p) − 1, if k > ⌊K/2⌋ .

Figure 15: Example of synthetic data in binary case. We set d = 2 and m = 1. (1) p = 0.5 (e.g. no unfairness) (2)
p = 0.75 (e.g. unfair dataset) (3) p = 1 (e.g. highly unfair dataset)
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Numerical evaluation

Numerical evaluation: synthetic data

" Fairness of g is measured via the empirical version of the unfairness measure U(g).

Figure 16: Empirical distribution of Random Forest (RF) score functions for the class Y = 1, conditional to the
sensitive feature S = ±1. (1)-(3) ϵ-fairness with ϵ ∈ {0, 0.1, 0.15}, (4) unfair.

Figure 17: RF (Accuracy, Unfairness) phase diagrams for synthetic datasets w.r.t. Left the level of bias p; Right the
accuracy-fairness trade-off parameter ε. Best trade-off at top-left corner.
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Alternative method: score-fairness

Definition (score-fair in demographic parity)

f : X × {−1, 1} 7→ RK is score-fair in DP if each coordinate fk of f is DP fair,

P(fk (X ,S) ≤ t | S = −1) = P(fk (X ,S) ≤ t | S = 1) ∀k , t ∈ [K ]× R .

Consider minimization task

f∗score−fair ∈ argmin {R2(f ) : f is score-fair} .

where R2(f ) = E
[∑K

k=1 (1Y=k − fk (X ,S))2
]
.

Theorem: Optimal prediction under DP score-fairness (L2-risk based) [CDH+20]

[CDH+20] identifies the distribution of score-fair classifier f∗score−fair as solutions of a
Wasserstein barycenter problem. In particular, f∗score−fair = (f∗sf ,1, . . . , f

∗
sf ,K ) ∈ RK with

f∗sf ,k (x , s) = (π−s · Qf∗k |−s︸ ︷︷ ︸
quantile function

) ◦ Ff∗k |s︸ ︷︷ ︸
CDF

(f∗k (x , s))

Plug-in estimator by estimating for all s ∈ S, πs , Ff∗k |s and Qf∗k |s .
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Numerical evaluation on synthetic data (1/2) : argmax-fair VS score-fair

Figure 18: Empirical distribution of the score functions for the class Y = 1, conditional to S = ±1.

Figure 19: Emp. distribution of unfair(left), score-fair(middle) and argmax-fair(right) classifiers conditional to S =
±1
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Numerical evaluation on synthetic data (2/2) : argmax-fair VS score-fair

Figure 20: Performance (accuracy, fairness) for unfair, argmax-fair, and score-fair classifiers (30 simulations).

Figure 21: Performance (accuracy, fairness) for unfair, argmax-fair, and score-fair classifiers (30 simulations).
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Numerical evaluation: real data

CRIME, K = 7 LAW, K = 4
Accuracy Unfairness (sum) Accuracy Unfairness (sum)

reglog + unfair 0.34 ± 0.02 1.12 ± 0.07 0.43 ± 0.01 0.89 ± 0.05
reglog + score-fair (baseline) 0.33 ± 0.01 0.78 ± 0.09 0.42 ± 0.01 0.09 ± 0.02
reglog + argmax-fair 0.28 ± 0.01 0.26 ± 0.07 0.42 ± 0.01 0.05 ± 0.02
linearSVC + unfair 0.36 ± 0.02 1.12 ± 0.07 0.43 ± 0.01 0.97 ± 0.07
linearSVC + score-fair (baseline) 0.31 ± 0.02 0.88 ± 0.05 0.42 ± 0.01 0.1 ± 0.03
linearSVC + argmax-fair 0.29 ± 0.02 0.25 ± 0.08 0.42 ± 0.01 0.04 ± 0.02
GaussSVC + unfair 0.36 ± 0.02 1.4 ± 0.13 0.43 ± 0.01 1.04 ± 0.04
GaussSVC + score-fair (baseline) 0.35 ± 0.02 1.02 ± 0.07 0.42 ± 0.01 0.16 ± 0.04
GaussSVC + argmax-fair 0.3 ± 0.02 0.22 ± 0.05 0.42 ± 0.01 0.10 ± 0.03
RF + unfair 0.37 ± 0.02 1.02 ± 0.04 0.40 ± 0.01 0.65 ± 0.04
RF + score-fair (baseline) 0.34 ± 0.02 0.67 ± 0.06 0.39 ± 0.01 0.11 ± 0.05
RF + argmax-fair 0.3 ± 0.02 0.33 ± 0.11 0.39 ± 0.01 0.07 ± 0.02

Table 2: (accuracy & unfairness) in multi-class tasks over 30 repetitions. Colored values highlight fairness.

Results

argmax-fair procedure outperforms unfair and score-fair approaches.

Provide optimal fair classification rule under DP constraint.

Our approach can be applied on top of any probabilistic base estimator.
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