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General context: machine learning process

Given these conditions ...

Big data

+

Good-quality data

Labeled data

Unbiased data

... we (may) have:

Accurate prediction

Robust prediction

Unbiased prediction
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General context: examples in insurance

Example 1: Car insurance

Categorising photos of damaged cars

Label issue: need expert insurers to label

Vehicle Telematics

Privacy issue: can infer some sensible features

Aim: ML-based actuarial pricing

Fairness issue: can reflect social discriminations/prejudices

Example 2: Regulations

Detection of GDPR compliance in (text) documents

Label issue and Fairness issue:
need legal professionals to label + imbalanced datasets

Age Sex Claim

Erwan 31 M 0
Alice 22 F 1
Frank 67 M 0

(images source: https://www.123rf.com)

Challenge 1: learning with limited labeling budget

Challenge 2: ensuring algorithmic fairness
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Challenge 1: learning with limited labeling budget

Challenge 1: learning with limited labeling budget

Some ideas and their limits.

Figure 1: Parallel labeling

Costly and time-consuming

Figure 2: Semi-supervised Learning

Produces pseudo-labels
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Challenge 1: learning with limited labeling budget

Active learning

H = {h : X︸︷︷︸
instance

→ Y︸︷︷︸
label

} hypothesis space

D(train) training set and D(pool)
X pool set.

Figure 3: Active learning in an offline scenario

Algorithm 1 Outline of active learning (AL) process

Input: h ∈ H a base estimator, D(train) and D(pool)
X

Step 1. Fit h on the training set D(train)

Step 2. Given a score I(x, h), we sample:

x∗ = argmax

x∈D(pool)
X

{I(x, h)}

Example: Entropy-based [Sha48]

I(x, h) = −
K∑

k=1
P(h(x) = k|x) log P(h(x) = k|x)

Step 3. If y∗ is its label then we update:

D(train) = D(train) ∪ {(x∗
, y∗)}

D(pool)
X = D(pool)

X − {x∗}

Step 4. Return to step 1 until convergence.
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Challenge 1: learning with limited labeling budget

Active learning: experiments on real datasets

Net Promoter Score (NPS) of Société Générale Insurance

About the data: Net Promoter Score (NPS)

Score: client’s score of an insurance product (score between 0 and 10);
Verbatim: explanation of the score by the client (encoded by doc2vec [LM14]);
Sentiment analysis: Y = {score ≤ T , > T}, parameter T to be determined.

Learning model: XGBoost [CG16].

Batch-mode AL (BMAL): at each AL iteration, sample the top b instances.

Figure 4: BMAL performance with b = 50, 100, 200

Why use BMAL ? [CSC+17, GSS19, WZS19]

i) useful for parallel labeling
ii) avoid cost of retraining delays.

Calibrate b ?
Optimal dynamic batch-size
Stochastic control
& dynamic programming principle

François HU CREST, ENSAE IP Paris Semi-supervised learning in insurance June 15, 2022 9 / 34



Introduction Dynamic-size batch mode active learning Exact and approximate fairness in multi-class classification Conclusion References

Challenge 1: learning with limited labeling budget

Active learning: experiments on real datasets

Net Promoter Score (NPS) of Société Générale Insurance

About the data: Net Promoter Score (NPS)

Score: client’s score of an insurance product (score between 0 and 10);
Verbatim: explanation of the score by the client (encoded by doc2vec [LM14]);
Sentiment analysis: Y = {score ≤ T , > T}, parameter T to be determined.

Learning model: XGBoost [CG16].

Batch-mode AL (BMAL): at each AL iteration, sample the top b instances.

Figure 4: BMAL performance with b = 50, 100, 200

Why use BMAL ? [CSC+17, GSS19, WZS19]

i) useful for parallel labeling
ii) avoid cost of retraining delays.

Calibrate b ?
Optimal dynamic batch-size
Stochastic control
& dynamic programming principle

François HU CREST, ENSAE IP Paris Semi-supervised learning in insurance June 15, 2022 10 / 34



Introduction Dynamic-size batch mode active learning Exact and approximate fairness in multi-class classification Conclusion References

Challenge 2: ensuring algorithmic fairness

Challenge 2: ensuring algorithmic fairness (in group fairness)

Data: (feature︸ ︷︷ ︸
X

, sensitive attribute︸ ︷︷ ︸
S

, label︸ ︷︷ ︸
Y

) ∼ P on X ×S × [K ]. Consider S = {−1,+1}.

Demographic parity [CKP09, BHN17]

Classifier h ∈ H,

P (h(X , S) = k|S = 1) = P (h(X , S) = k|S = −1) ∀k ∈ [K ] .

This thesis is about demographic parity (DP).
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Challenge 2: ensuring algorithmic fairness

Challenge 2: some ideas and their limits

Where to reduce algorithmic bias?

Modify the dataset Time complexity

Methodologies

Pre-processing: reduce bias in the data before applying ML models [CKS+18, DIKL18]

In-processing: reduce bias during training ML models [GCGF16, ABD+18, Nar18]

Post-processing: reduce bias after fitting ML models [DHP+12, HPS16, KGZ19].

In this thesis: (semi-supervised) post-processing strategy.
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Challenge 2: ensuring algorithmic fairness

Algorithmic fairness in multi-class classification

Most of the work in algorithmic fairness: binary or regression tasks

However up to our knowledge, few works on multi-class classification framework

Most (modern) applications are multi-class tasks (e.g. risk segmentation)

Our contribution for challenge 2: Algorithmic fairness in multi-class tasks [DEHH21]1

Optimal fair classifiers under (exact and approximate) DP constraints

Theoretical fairness guarantees

Numerical efficiency of the proposed method

1Fairness guarantee in multi-class classification. Christophe Denis, Romuald Elie, François Hu, Mohamed Hebiri
(submitted in 2022, in review).
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BMAL as a Markov decision process

Context: SS-BMAL and DS-BMAL procedures

Objective
Find sequence of AL batch sizes (bt )t with a good trade-off between

maximizing the model performance

reducing the number of AL iterations

Static-size BMAL (SS-BMAL) if bt = b0 for all t ; dynamic-size BMAL (DS-BMAL) otherwise

Figure 5: PL and SS-BMAL. Figure 6: PL and BMAL (boxplot). Figure 7: PL and naïve DS-BMAL.

BMAL experiments over 15 simulations

Data: Internet Movie Db (IMDb) [MDP+11] containing collection of movie reviews and binary ratings

Learning model: logistic regression

State-of-the-art BMAL method: Given an AL batch-size bt , [WZS19] sample the top bt instances in terms of
representativeness and the certainty score.
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BMAL as a Markov decision process

DS-BMAL as a Markov Decision Process (MDP)

State processes: we set the dynamics of the state processes (Wt brownian motion) as{
dQt = µ(Bt , bt ) · Qt (1 − Qt ) · dt + σ(Bt , bt ) · Qt (1 − Qt ) · dWt (performance process in [0, 1])
dBt = bt · dt (number of labeled data in [0, BMAX] )

Optimization problem:

V0 = sup
b

E

[
U(Qτ ) −

∫ τ

0
C(bs)ds

]
(value function)

U utility function models user risk-aversion concerning the model labeling-performance
τ stopping time

τ = inf {t ≥ 0 | Bt = BMAX or Qt = 0 or Qt = 1} .

C cost assumed to be a convex function of the batch size b.

Parameters:

µ and σ are inferred by numerical analysis

µ(B, b) ∝
b
B

and σ(B, b) ∝
b
B

C and U are standard power functions: C(b) ∝ b2 and U(Q) = Qp , p ∈ (0, 1).
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BMAL as a Markov decision process

Optimal feedback control

Dynamic programming principle

Dynamic programming principle (DPP) [Bel58] leads to

(value function) Vt := v(Qt , Bt ) = sup
bs, s∈[t,τ ]

E

[
v(Qt+h, Bt+h) −

∫ t+h

t
C(bs)ds

∣∣∣∣FW
t

]

Hamilton Jacobi Bellman (HJB) equation
HJB equation in the interior of the domain [0, 1] × [0, BMAX ]

sup
b≥0

b≤BMAX −B

{
µ(B, b)Q(1 − Q)

∂v

∂Q
(Q, B) + b

∂v

∂B
(Q, B) +

1

2
σ(B, b)2Q2(1 − Q)2

∂2v

∂Q2
(Q, B) − C(b)

}
︸ ︷︷ ︸

= A(Q,B,b,v)

= 0

Boundary conditions:

v(0+
, B) = U(0)

v(1−
, B) = U(1)

v(Q, BMAX) = U(Q) for Q ∈ (0, 1)
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Numerical evaluation

Numerical resolution

Discretisation

Discretisation of [0, 1] × [0, BMAX] into grid of nQ × nB
nodes and

vi,j = v (j∆Q , i∆B)

with ∆Q =
1

nQ
and ∆B =

BMAX

nB

Discretisation of A: Âi,j (b, vi−1,j ) by finite difference

Howard algorithm [How60]

Compute vi,j by backward induction. At iteration k :

Step 1. given vk , find bk+1 maximizing

sup
0≤b≤BMAX −B

{
Âi,j (b, vk )

}
Step 2. given bk+1, compute the solution vk+1 s.t. Âi,j (bk+1, vk ) = 0
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Numerical evaluation

Numerical results (1/2)

b∗ corresponds to the optimal control

Figure 8: Heatmap of b∗ w.r.t. the state process (B, Q). Figure 9: Heatmap of rate b∗/(BMAX − B) w.r.t. (B, Q).
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Numerical evaluation

Numerical results (2/2)

Figure 10: Comparison between optimal and deterministic strategies with static
batch size b ∈ {5, 20, 80}. Initially, we set (B0, Q0) = (0, 0.5).

Strategies | Initial performance Q0 = 0.3 Q0 = 0.5
Optimized 0.577 ± 0.01 0.756 ± 0.007
Deterministic with b = 5 0.574 ± 0.001 0.753 ± 0.011
Deterministic with b = 20 0.574 ± 0.0 0.728 ± 0.006
Deterministic with b = 80 0.574 ± 0.0 0.727 ± 0.0

Table 1: Value functions as a function of the control strategy. We report the means
and standard deviations over 2000 simulations. Coloured values highlight best
strategy.

Results
Optimised strategy
outperforms deterministic
strategies in terms of:

model quality by
labelling less at the
beginning of the
process

reduction of
(retraining) delays.
Indeed this dynamic
strategy considerably
reduces the number of
iterations.
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Context: argmax-fairness

Notations

Data: (feature︸ ︷︷ ︸
X

, sensitive attribute︸ ︷︷ ︸
S

, label︸ ︷︷ ︸
Y

) ∼ P on X × S × [K ]

Distribution of S: (πs)s∈S

Misclassification risk for a classifier g : X × {−1, 1} → [K ]:

R(g) := P (g(X ,S) ̸= Y )

Scores: for k ∈ [K ], we denote pk (X ,S) := P (Y = k |X ,S)

Bayes classifier minimizes the misclassification risk:

g∗(x , s) ∈ argmax
k

pk (x , s) , for all (x , s) ∈ X × S

Objective:
Minimizing the risk: g∗ ∈ argmin

g
R(g)

Enforcing fairness: g∗(X ,S) ⊥⊥ S︸ ︷︷ ︸
Demographic Parity (DP)

(denoted g∗ ∈ Gfair )
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Exact-fairness

Exact fairness in multi-class classification

Definition (Exact Demographic Parity)

Classifier g is exactly fair if for each k ∈ [K ],

P (g(X ,S) = k |S = 1) = P (g(X ,S) = k |S = −1)

Equivalently, if we define the following unfairness measure

U(g) := max
k∈[K ]

|P (g(X ,S) = k |S = 1)− P (g(X ,S) = k |S = −1)|

Classifier g is exactly fair i.i.f. U(g) = 0.

Optimal exactly fair classifier g∗
fair solves

min
g∈Gfair

R(g) (equality constraint !)

Let us consider its Lagrangian and introduce for λ = (λ1, . . . , λK ) ∈ RK ,

Rλ(g) := R(g) +
K∑

k=1

λk [P (g(X ,S) = k |S = 1)− P (g(X ,S) = k |S = −1)]

We call this measure fair-risk.
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Exact-fairness

Optimal prediction under exact-DP

Continuity assumption
t 7→ P(pk (X , S) − pj (X , S) ≤ t|S = s) considered continuous, for any k, j ∈ [K ] and s ∈ S.

Proposition

Under continuity assumption, we define

λ∗ ∈ arg min
λ∈RK

∑
s∈S

EX |S=s

[
max

k
(πspk (X , s)− sλk )

]
.

Then, g∗
fair ∈ argming∈Gfair R(g) i.f.f g∗

fair ∈ argming∈G Rλ∗ (g).

Corollary

Under continuity assumption, an optimal exactly fair classifier is characterized by

g∗
fair (x , s) ∈ arg max

k∈[K ]
(πspk (x , s)− sλ∗

k ) , (x , s) ∈ X × S.
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Exact-fairness

Semi-supervised post-processing estimator

Theoretical fair solution:

λ
∗ ∈ arg min

λ∈RK

∑
s∈S

EX|S=s

[
max

k
(πspk (X , s) − sλk )

]
.

g∗
fair(x, s) ∈ arg max

k

(
πspk (x, s) − sλ∗

k
)
, (x, s) ∈ X × S .

Empirical fair solution

Plug-in: Estimation based on independent samples

Labeled data: Dn = (Xi , Si , Yi )i=1,...,n. ζk uniform perturbation on [0, u]
train estimators (p̂k )k . Continuity assumption satisfied if p̄k (X , S, ζk ) := p̂k (X , S) + ζk

Unlabeled data: for all s ∈ S, X s
1 , . . . , X s

Ns
iid∼ PX|S=s

empirical frequencies (π̂s)s∈S as estimates of (πs)s∈S (recall that πs = P(S = s))

Fair estimator:

λ̂ ∈ arg min
λ

∑
s∈S

1
Ns

Ns∑
i=1

[
max
k∈[K ]

(
π̂s p̄k (X

s
i , s, ζs

k,i ) − sλk

)]

ĝ(x, s) = arg max
k∈[K ]

(
π̂s p̄k (x, s, ζk ) − sλ̂k

)
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Exact-fairness

Statistical guarantees

Theorem

Universal exact fairness guarantee. There exists constant C > 0 depending only on K and
mins∈S πs , s.t., for any estimators p̂k ,

E [U(ĝ)] ≤
C
√

N

Consistency. Under continuity assumption

E[Rλ∗ (ĝ)] − Rλ∗ (g∗
fair ) ≤ C

E [∥p̂ − p∥1] +
∑
s∈S

E [|π̂s − πs|] + E [U(ĝ)] + u


with ∥p̂ − p∥1 =

∑
k∈[K ] |p̂k (X , S) − pk (X , S)| (L1-norm b/w estimator and cond.prob.)

Corollary

If E [∥p̂ − p∥1] → 0 and u = un → 0 when n → ∞, we have

|E[R(ĝ)] − R(g∗
fair )| → 0, as n, N → ∞

Under suitable conditions, we have E[R(ĝ)] → R(g∗
fair ) and E[U(ĝ)] → 0 as n, N → ∞.
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Approximate-fairness

Approximate fair multi-class classification

Definition (ε-Demographic Parity)

Given ε > 0, classifier g is ε-fair if for each k ∈ [K ],

|P (g(X ,S) = k |S = 1)− P (g(X ,S) = k |S = −1)| ≤ ε .

Equivalently, (using unfairness measure) classifier g is ε-fair i.f.f. U(g) ≤ ε.

Optimal exactly fair classifier g∗
ε−fair solves

min
g∈Gε−fair

R(g) (inequality constraint !)

Let us consider its Lagrangian and introduce for λ(1) = (λ
(1)
1 , . . . , λ

(1)
K ) ∈ RK

+ and

λ(2) = (λ
(2)
1 , . . . , λ

(2)
K ) ∈ RK

+,

Rλ(1),λ(2) (g) := R(g) +
K∑

k=1

λ
(1)
k [P (g(X ,S) = k |S = 1)− P (g(X ,S) = k |S = −1)− ε]

+
K∑

k=1

λ
(2)
k [P (g(X ,S) = k |S = −1)− P (g(X ,S) = k |S = 1)− ε] .

We call this measure ε-fair-risk.
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Approximate-fairness

Optimal prediction under ε-DP

Proposition
Let H : R2K

+ → R be the function

H(λ(1)
, λ

(2)) =
∑
s∈S

EX|S=s

[
max

k

(
πspk (X , s) − s(λ(1)

k − λ
(2)
k )

)]
+ ε

K∑
k=1

(λ
(1)
k + λ

(2)
k ) .

Under continuity assumption, we define λ∗(1), λ∗(2) ∈ R2K
+ by

(λ∗(1)
, λ

∗(2)) ∈ arg min
(λ(1),λ(2))∈R2K

+

H(λ(1)
, λ

(2)) .

Then, g∗
ε−fair ∈ arg ming∈Gε−fair R(g) iff g∗

ε−fair ∈ arg ming∈G R
λ∗(1),λ∗(2) (g).

In addition, g∗
ε−fair (x, s) = arg max

k∈[K ]

(
πspk (x, s) − s(λ∗(1)

k − λ
∗(2)
k )

)
∀(x, s) ∈ X × S .

Same methodology and extension of exact-fairness:

i) Plug-in ε fair classifier in a semi-supervised manner with randomization trick.

ii) Distribution-free ε-fairness. Estimator ĝε: right fairness level |E[U(ĝε)] − ε| ≤ C√
N

.

iii) Consistency. If estimator L1-norm consistent then E [R(ĝε)] → R(g∗
ε−fair ) as n, N → ∞.
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Approximate-fairness

Numerical evaluation: real data

Figure 11: (Accuracy, Unfairness) phase diagrams in binary case

Figure 12: (Accuracy, Unfairness) phase diagrams in multi-class case.

Models & Datasets

Datasets: CRIME, LAW
and STUDENTS.

models: logistic regression
(reglog) and RF

Results

1 Competitive unfairness.
Exactly-fair algorithm
achieves similar
performance as the
state-of-the-art fair-learna

2 Competitive accuracy.
Achieve a better accuracy
on CRIME when we
consider RF (.70 vs .65)

3 Time complexity. Baseline
running time more higher
than with our method.

ahttps://fairlearn.org/
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Conclusion

This thesis propose some methods for both challenges
1 learning with limited labeling budget
2 ensuring algorithmic fairness

motivated by insurance applications.

Challenge 1-2: fair active learning [EHHJ21]

Accuracy analysis

Robustness analysis

Fairness analysis

Perspective: further works on these challenges

Challenge 1: Generalizing optimal AL batch-size

Challenge 2: Multi-label classification with score-fair (instead of exactly-fair).

R2(g) = E

[ K∑
k=1

(1Y=k − gk (X ,S))2

]
VS R(g) = P(g(X ,S) ̸= Y )
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Active learning: comparison with passive learning

Empirical risk minimization (ERM)

(Misclassification) Risk:
R(h) = P(h(x) ̸= y);

Empirical risk:
R̂n(h) = 1

n
∑n

i=1 1 (h(xi ) ̸= yi );
ERM:

ĥ = argmin
h∈H

R̂n(h).

Figure 13: Passive learning (random sampling)

Figure 14: Active learning (entropy-based sampling, Shannon entropy [Sha48]).
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Numerical evaluation: synthetic data

Synthetic data: Gaussian mixture model with Bernoulli contamination
Features & Sensitive feature. Consider ck ∼ Ud (−1, 1), and µk

1 , . . . , µ
k
m ∼ Nd (0, Id ),

(X |Y = k) ∼
1

m

m∑
i=1

Nd (c
k + µ

k
i , Id ), for k ∈ [K ],

(S|Y = k) ∼ 2 · B(p) − 1, if k ≤ ⌊K/2⌋ ,

(S|Y = k) ∼ 2 · B(1 − p) − 1, if k > ⌊K/2⌋ .

Figure 15: Example of synthetic data in binary case. We set d = 2 and m = 1. (1) p = 0.5 (e.g. no unfairness) (2)
p = 0.75 (e.g. unfair dataset) (3) p = 1 (e.g. highly unfair dataset)
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Numerical evaluation

Numerical evaluation: synthetic data

" Fairness of g is measured via the empirical version of the unfairness measure U(g).

Figure 16: Empirical distribution of Random Forest (RF) score functions for the class Y = 1, conditional to the
sensitive feature S = ±1. (1)-(3) ϵ-fairness with ϵ ∈ {0, 0.1, 0.15}, (4) unfair.

Figure 17: RF (Accuracy, Unfairness) phase diagrams for synthetic datasets w.r.t. Left the level of bias p; Right the
accuracy-fairness trade-off parameter ε. Best trade-off at top-left corner.
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Alternative method: score-fairness

Definition (score-fair in demographic parity)

f : X × {−1, 1} 7→ RK is score-fair in DP if each coordinate fk of f is DP fair,

P(fk (X ,S) ≤ t | S = −1) = P(fk (X ,S) ≤ t | S = 1) ∀k , t ∈ [K ]× R .

Consider minimization task

f∗score−fair ∈ argmin {R2(f ) : f is score-fair} .

where R2(f ) = E
[∑K

k=1 (1Y=k − fk (X ,S))2
]
.

Theorem: Optimal prediction under DP score-fairness (L2-risk based) [CDH+20]

[CDH+20] identifies the distribution of score-fair classifier f∗score−fair as solutions of a
Wasserstein barycenter problem. In particular, f∗score−fair = (f∗sf ,1, . . . , f

∗
sf ,K ) ∈ RK with

f∗sf ,k (x , s) = (π−s · Qf∗k |−s︸ ︷︷ ︸
quantile function

) ◦ Ff∗k |s︸ ︷︷ ︸
CDF

(f∗k (x , s))

Plug-in estimator by estimating for all s ∈ S, πs , Ff∗k |s and Qf∗k |s .
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Numerical evaluation on synthetic data (1/2) : argmax-fair VS score-fair

Figure 18: Empirical distribution of the score functions for the class Y = 1, conditional to S = ±1.

Figure 19: Emp. distribution of unfair(left), score-fair(middle) and argmax-fair(right) classifiers conditional to S =
±1
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Numerical evaluation on synthetic data (2/2) : argmax-fair VS score-fair

Figure 20: Performance (accuracy, fairness) for unfair, argmax-fair, and score-fair classifiers (30 simulations).

Figure 21: Performance (accuracy, fairness) for unfair, argmax-fair, and score-fair classifiers (30 simulations).
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Numerical evaluation: real data

CRIME, K = 7 LAW, K = 4
Accuracy Unfairness (sum) Accuracy Unfairness (sum)

reglog + unfair 0.34 ± 0.02 1.12 ± 0.07 0.43 ± 0.01 0.89 ± 0.05
reglog + score-fair (baseline) 0.33 ± 0.01 0.78 ± 0.09 0.42 ± 0.01 0.09 ± 0.02
reglog + argmax-fair 0.28 ± 0.01 0.26 ± 0.07 0.42 ± 0.01 0.05 ± 0.02
linearSVC + unfair 0.36 ± 0.02 1.12 ± 0.07 0.43 ± 0.01 0.97 ± 0.07
linearSVC + score-fair (baseline) 0.31 ± 0.02 0.88 ± 0.05 0.42 ± 0.01 0.1 ± 0.03
linearSVC + argmax-fair 0.29 ± 0.02 0.25 ± 0.08 0.42 ± 0.01 0.04 ± 0.02
GaussSVC + unfair 0.36 ± 0.02 1.4 ± 0.13 0.43 ± 0.01 1.04 ± 0.04
GaussSVC + score-fair (baseline) 0.35 ± 0.02 1.02 ± 0.07 0.42 ± 0.01 0.16 ± 0.04
GaussSVC + argmax-fair 0.3 ± 0.02 0.22 ± 0.05 0.42 ± 0.01 0.10 ± 0.03
RF + unfair 0.37 ± 0.02 1.02 ± 0.04 0.40 ± 0.01 0.65 ± 0.04
RF + score-fair (baseline) 0.34 ± 0.02 0.67 ± 0.06 0.39 ± 0.01 0.11 ± 0.05
RF + argmax-fair 0.3 ± 0.02 0.33 ± 0.11 0.39 ± 0.01 0.07 ± 0.02

Table 2: (accuracy & unfairness) in multi-class tasks over 30 repetitions. Colored values highlight fairness.

Results

argmax-fair procedure outperforms unfair and score-fair approaches.

Provide optimal fair classification rule under DP constraint.

Our approach can be applied on top of any probabilistic base estimator.

François HU CREST, ENSAE IP Paris Semi-supervised learning in insurance June 15, 2022 48 / 34


	Introduction
	Challenge 1: learning with limited labeling budget
	Challenge 2: ensuring algorithmic fairness

	Dynamic-size batch mode active learning
	BMAL as a Markov decision process
	Numerical evaluation

	Exact and approximate fairness in multi-class classification
	Exact-fairness
	Approximate-fairness

	Conclusion
	References
	Appendix
	Active learning
	Synthetic data for argmax-fairness
	Numerical evaluation

	Score-fairness


