Efficient labeling with Active Learning

François HU ENSAE - Société Générale Insurance

Joint work with **Caroline HILLAIRET** (CREST-ENSAE), **Marc JUILLARD** (Société Générale Insurance) and **Romuald ELIE** (CREST-ENSAE)

Online International Conference in Actuarial Science, Data Science and Finance (OICA), 2020

April 28, 2020

Summary

1 Context

- Motivating application
- Notation
- Intuition

2 Active learning

- Uncertainty-based active learning
- Disagreement-based active learning
- More algorithms

3 Experimentations

- Data
- Active learning
- Mini-batch active learning

Insurance organisations store voluminous textual data on a daily basis :

- free text areas used by call center agents,
- e-mails,
- customer reviews,...

These textual data are valuable and can be used in many use cases ...

- optimize business processes,
- analyze customer expectations and opinions,
- control compliance (GDPR type) and fight against fraud, ...

… however

- it is impossible for human experts to analyse all these quantities,
- and the data usually comes unlabelled

Solution : exploit this large pool of unlabelled data with Active Learning

• • • • • • • • • • • •

Insurance organisations store voluminous textual data on a daily basis :

- free text areas used by call center agents,
- e-mails,
- customer reviews,...

These textual data are **valuable** and can be used in many use cases ...

- optimize business processes,
- analyze customer expectations and opinions,
- control compliance (GDPR type) and fight against fraud, ...

... however

- it is impossible for human experts to analyse all these quantities,
- and the data usually comes unlabelled

Solution : exploit this large pool of unlabelled data with Active Learning

• • • • • • • • • • • •

Insurance organisations store voluminous textual data on a daily basis :

- free text areas used by call center agents,
- e-mails,
- customer reviews,...

These textual data are valuable and can be used in many use cases ...

- optimize business processes,
- analyze customer expectations and opinions,
- control compliance (GDPR type) and fight against fraud, ...
- ... however
 - it is impossible for human experts to analyse all these quantities,
 - and the data usually comes unlabelled

Solution : exploit this large pool of unlabelled data with Active Learning

Image: A = A

Insurance organisations store voluminous textual data on a daily basis :

- free text areas used by call center agents,
- e-mails,
- customer reviews,...

These textual data are **valuable** and can be used in many use cases ...

- optimize business processes,
- analyze customer expectations and opinions,
- control compliance (GDPR type) and fight against fraud, ...
- ... however
 - it is impossible for human experts to analyse all these quantities,
 - and the data usually comes unlabelled

Solution : exploit this large pool of unlabelled data with Active Learning

Context Motivating a Active learning Notation Experimentations Intuition

Notation and goal

Notations :

- let \mathcal{X} be the instance space, \mathcal{Y} the label space and $\mathcal{H} : \mathcal{X} \to \mathcal{Y}$ a class of hypotheses with finite VC dimension d
- let \$\mathcal{P}\$ be the distribution over \$\mathcal{X} \times \mathcal{Y}\$ and \$\mathcal{P}_{\mathcal{X}}\$ the marginal of \$\mathcal{P}\$ over \$\mathcal{X}\$. In practice instead of \$\mathcal{P}_{\mathcal{X}}\$ we have a pool of unlabeled data \$\mathcal{U} = (x_i^{(pool)})_{i=1}^U\$

Goal : label a sub-sample of \mathcal{U} in order to construct an optimal training set $\mathcal{L} = \{(x_i^{(train)}, y_i^{(train)})\}_{i=1}^L$ for our learning algorithm \mathcal{A} (which give us $\hat{h} \in \mathcal{H}$) For any $h \in \mathcal{H}$, define :

- **Risk** : $R(h) = \mathbb{P}(h(x) \neq y)$
- Empirical risk : $\hat{R}_{\{(x_i, y_i)\}_{i=1}^n}(h) = \frac{1}{n} \sum_{i=1}^n \mathbb{1}(h(x_i) \neq y_i)$

Given a holdout set (or test set) $\mathcal{T} = \{(x_i^{(test)}, y_i^{(test)})\}_{i=1}^T$, our aim is to produce a highly-accurate classifier (i.e. minimize $\hat{R}_{\mathcal{T}}(\hat{h})$) using as few labels as possible.

◆ロ ▶ ◆母 ▶ ◆臣 ▶ ◆臣 ● ○ ○ ○

Context Motivating application Active learning Notation Experimentations Intuition

Notation and goal

Notations :

- let \mathcal{X} be the instance space, \mathcal{Y} the label space and $\mathcal{H} : \mathcal{X} \to \mathcal{Y}$ a class of hypotheses with finite VC dimension d
- let \mathcal{P} be the distribution over $\mathcal{X} \times \mathcal{Y}$ and $\mathcal{P}_{\mathcal{X}}$ the marginal of \mathcal{P} over \mathcal{X} . In practice instead of $\mathcal{P}_{\mathcal{X}}$ we have a pool of unlabeled data $\mathcal{U} = (x_i^{(pool)})_{i=1}^U$

Goal : label a sub-sample of \mathcal{U} in order to construct an optimal training set $\mathcal{L} = \{(x_i^{(train)}, y_i^{(train)})\}_{i=1}^{L}$ for our learning algorithm \mathcal{A} (which give us $\hat{h} \in \mathcal{H}$) For any $h \in \mathcal{H}$, define :

Risk : $R(h) = \mathbb{P}(h(x) \neq y)$

• Empirical risk : $\hat{R}_{\{(x_i,y_i)\}_{i=1}^n}(h) = \frac{1}{n} \sum_{i=1}^n \mathbb{1}(h(x_i) \neq y_i)$

Given a holdout set (or test set) $\mathcal{T} = \{(x_i^{(test)}, y_i^{(test)})\}_{i=1}^T$, our aim is to produce a highly-accurate classifier (i.e. minimize $\hat{R}_{\mathcal{T}}(\hat{h})$) using as few labels as possible.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ◆□ ● ○○○

Context Motivating application Active learning Notation Experimentations Intuition

Notation and goal

Notations :

- let X be the instance space, Y the label space and H : X → Y a class of hypotheses with finite VC dimension d
- let \mathcal{P} be the distribution over $\mathcal{X} \times \mathcal{Y}$ and $\mathcal{P}_{\mathcal{X}}$ the marginal of \mathcal{P} over \mathcal{X} . In practice instead of $\mathcal{P}_{\mathcal{X}}$ we have a pool of unlabeled data $\mathcal{U} = (x_i^{(pool)})_{i=1}^U$

Goal : label a sub-sample of \mathcal{U} in order to construct an optimal training set $\mathcal{L} = \{(x_i^{(train)}, y_i^{(train)})\}_{i=1}^{L}$ for our learning algorithm \mathcal{A} (which give us $\hat{h} \in \mathcal{H}$) For any $h \in \mathcal{H}$, define :

- **Risk** : $R(h) = \mathbb{P}(h(x) \neq y)$
- Empirical risk : $\hat{R}_{\{(x_i, y_i)\}_{i=1}^n}(h) = \frac{1}{n} \sum_{i=1}^n \mathbb{1}(h(x_i) \neq y_i)$

Given a holdout set (or test set) $\mathcal{T} = \{(x_i^{(test)}, y_i^{(test)})\}_{i=1}^T$, our aim is to produce a highly-accurate classifier (i.e. minimize $\hat{R}_{\mathcal{T}}(\hat{h})$) using as few labels as possible.

◆ロ → ◆母 → ▲目 → ▲目 → ▲日 →

Notation and goal

Notations :

- let \mathcal{X} be the instance space, \mathcal{Y} the label space and $\mathcal{H}: \mathcal{X} \to \mathcal{Y}$ a class of hypotheses with finite VC dimension d
- let \mathcal{P} be the distribution over $\mathcal{X} \times \mathcal{Y}$ and $\mathcal{P}_{\mathcal{X}}$ the marginal of \mathcal{P} over \mathcal{X} . In practice instead of $\mathcal{P}_{\mathcal{X}}$ we have a pool of unlabeled data $\mathcal{U} = (x_i^{(pool)})_{i=1}^U$

Goal : label a sub-sample of \mathcal{U} in order to construct an optimal training set $\mathcal{L} = \{(x_i^{(train)}, y_i^{(train)})\}_{i=1}^{L}$ for our learning algorithm \mathcal{A} (which give us $\hat{h} \in \mathcal{H}$) For any $h \in \mathcal{H}$, define :

Risk :
$$R(h) = \mathbb{P}(h(x) \neq y)$$

• Empirical risk : $\hat{R}_{\{(x_i, y_i)\}_{i=1}^n}(h) = \frac{1}{n} \sum_{i=1}^n \mathbb{1}(h(x_i) \neq y_i)$

Given a holdout set (or test set) $\mathcal{T} = \{(x_i^{(test)}, y_i^{(test)})\}_{i=1}^T$, our aim is to produce a highly-accurate classifier (i.e. minimize $\hat{R}_{\mathcal{T}}(\hat{h})$) using as few labels as possible.

• • = • • = •

Context Active learning Intuition Experimentations

Passive Learning : a naive solution

Passive Learning : sample $x_i^{(train)}, \ldots, x_l^{(train)}$ *i.i.d* ~ $\mathcal{P}_{\mathcal{X}}$ then request their label

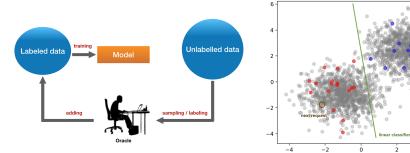


Figure: Conventional passive learning

Figure: an illustration of passive learning

< ロ > < 同 > < 回 > < 回 > < 回 > <

ż

Active Learning : a better solution

Active Learning : Let a learning algorithm sequentially requests the labels of ${\cal U}$

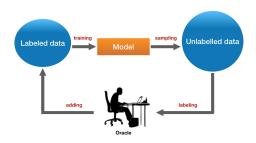


Figure: Conventional active learning

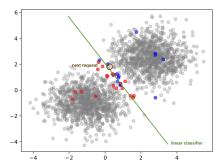


Figure: an illustration of active learning

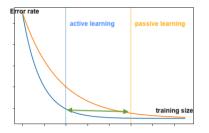
< □ > < 同 > < 回 >

Context Motivating applica Active learning Notation Experimentations Intuition

Active Learning : a better solution

[Hanneke, 14] : Let *h** the optimal Bayes classifer and

$$\epsilon = R(\hat{h}) - R(h^*)$$



Then under a given hypothesis (bounded noise) and active learning algorithm (A^2)

passive learning :

$$\epsilon \sim \frac{d}{n}$$

active learning :

$$\epsilon \sim \exp\left(-\operatorname{constant} \cdot \frac{n}{d}\right)$$

Context Unc Active learning Disa Experimentations More

Jncertainty-based active learning Disagreement-based active learning More algorithms

Active learning

1 Context

- Motivating application
- Notation
- Intuition

2 Active learning

- Uncertainty-based active learning
- Disagreement-based active learning
- More algorithms

3 Experimentations

- Data
- Active learning
- Mini-batch active learning

Uncertainty-based active learning Disagreement-based active learning More algorithms

Uncertainty Sampling

Uncertainty Sampling : label the instances for which the current model is least certain as to what the correct output should be.

Example : for binary classification, label the instances whose posterior probability of being positive is nearest 0.5 :

$$x^{(train)} = \arg\min_{x \in \mathcal{U}} \left\{ |P(y=1|x) - 0.5| \right\}$$

Entropy-based active learning [Lewis and Gale, 94] :

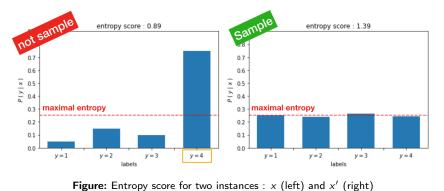
$$x_{\mathcal{H}}^{(train)} = \arg \max_{x \in \mathcal{U}} \left\{ -\sum_{y \in Y} P(y|x) \log P(y|x) \right\}$$

• □ ▶ • □ ▶ • □ ▶ • •

Uncertainty-based active learning Disagreement-based active learning More algorithms

Uncertainty Sampling

$$x_{H}^{(train)} = \arg \max_{x \in \mathcal{U}} \left\{ -\sum_{y \in Y} P(y|x) \log P(y|x) \right\}$$



François HU Efficient labeling with Active Learning

э

・ 同 ト ・ ヨ ト ・ ヨ ト

Query By Committee

Query By Committee (QBC): construct a committee of models $C = \{\hat{h}_1, \ldots, \hat{h}_N\}$ trained on the current labeled data \mathcal{L} . Here, the most informative query is the instance about which the "committee" disagrees the most

• The committee $C = \{\hat{h}_1, \dots, \hat{h}_N\}$:

Query by bagging (Qbag) [Abe and Mamitsuka, 98] : Bootstrap N times \mathcal{L} then train a learning algorithm on each bootstrapped data

Measure of disagreement :

Average Kullback Leibler divergence [MacCallum and Nigam, 98] :

$$x_{KL}^{(train)} = \arg \max_{x \in \mathcal{U}} \left\{ \frac{1}{N} \sum_{i=1}^{N} D(P_{\hat{h}_i} || P_{committee}) \right\}$$

where

$$D(P_{\hat{h}_i}||P_{committee}) = \sum_{y \in Y} P_{\hat{h}_i}(y|x) \log \left\{ \frac{P_{\hat{h}_i}(y|x)}{P_{committee}(y|x)} \right\} \text{ and}$$

$$P_{committee}(y|x) = \frac{1}{N} \sum_i P_{\hat{h}_i}(y|x)$$

 Context
 Uncertainty-based active learning

 Active learning
 Disagreement-based active learning

 Experimentations
 More algorithms

Query By Committee

$$x_{\mathcal{KL}}^{(train)} = \arg \max_{x \in \mathcal{U}} \left\{ \frac{1}{N} \sum_{i=1}^{N} D(P_{\hat{h}_i} || P_{committee}) \right\}$$

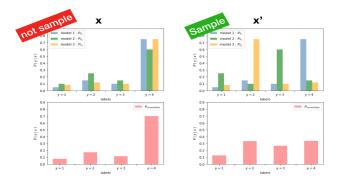


Figure: Distribution of the committee for two instances : x (left) and x' (right)

・ロ・ ・ 日・ ・ 回・

∢ 臣 ▶

2

Other types of Active Learning

- Another disagreement-based active learning : Agnostic Active Learning (A²) [Hanneke, 14]
- Expected Model Change : Sample instances that would impact the greatest change to the current model if we knew its label (example : "expected gradient length" (EGL) [Settles et al, 08])
- Expected Error Reduction : Sample instances that would make its generalization error likely to be reduced
- Density Weighted Sampling [Settles and Craven, 08] :

$$x_{density}^{(train)} = \arg \max_{x \in \mathcal{U}} \left\{ \phi_A(x) \times \left(\frac{1}{U} \sum_{x' \in \mathcal{U}} sim(x, x') \right)^{\beta} \right\}$$

with ϕ_A a measure of informativeness of x according to some sampling strategy A (uncertainty sampling, QBC, ...)

Data Active learning Mini-batch active learning

Experimentations

1 Context

- Motivating application
- Notation
- Intuition

2 Active learning

- Uncertainty-based active learning
- Disagreement-based active learning
- More algorithms

3 Experimentations

- Data
- Active learning
- Mini-batch active learning

Data Active learning Mini-batch active learning

Text data : Net Promoter Score (NPS)

About the data : Net Promoter Score

- **1** Score : the client's score of an insurance product (score between 0 and 10)
- 2 Verbatim : explanation (in french) of the score by the client

Encoding the text data : word2vec [Mikolov 2013]

Sentiment analysis : $Y = \{0, 1\} = \{\text{score} \le 6, \text{score} > 6\}$

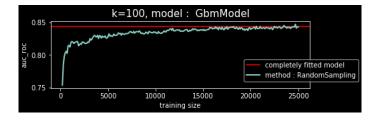
Mini-batch sampling algorithm : until we reach a stopping criterion,

- **1** train our model \hat{h} on the training set \mathcal{L}
- 2 select the k most informative samples $x_1^{(train)}, \ldots, x_k^{(train)}$ from the pool set \mathcal{U} 3 $\mathcal{U} \leftarrow \mathcal{U} - \{x_1^{(train)}, \ldots, x_k^{(train)}\}$ and $\mathcal{L} \leftarrow \mathcal{L} \cup \{x_1^{(train)}, \ldots, x_k^{(train)}\}$

◆□▶ ◆□▶ ▲目▶ ▲目▶ 目 うのの

Data Active learning Mini-batch active learning

Passive Learning

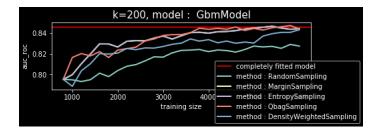


- Learning model : XGBoost
- Sampling strategy : random sampling
- Initial training size / mini batch size : 200 / 100
- Stopping criterion : 25 000

- 4 同 6 4 日 6 4 日

Data Active learning Mini-batch active learning

Active Learning

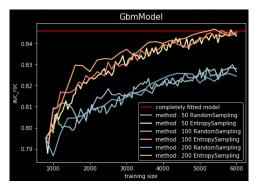


- Learning model : XGBoost
- Sampling strategy : random sampling
 - uncertainty-based sampling (Entropy, Margin)
 - disagreement-based sampling (Qbag)
 - density-based sampling (DensityWeighted)
- Initial training size / mini batch size : 800 / 200
- **Stopping criterion** : 6 000

▲ □ ▶ ▲ □ ▶ ▲

Data Active learning Mini-batch active learning

Mini-batch active learning

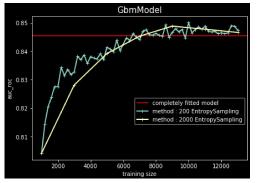


- Learning model : XGBoost
- Sampling strategy :
 - random sampling
 - entropy sampling
- Initial training size / mini batch size : 800 / (50, 100, 200)
- **Stopping criterion** : 6 000

(日) (同) (三) (

Data Active learning Mini-batch active learning

Mini-batch active learning



- Learning model : XGBoost
- Sampling strategy : entropy sampling
- Initial training size / mini batch size : 1000 / (200, 2000)

- 4 同 ト 4 三 ト 4

Stopping criterion : 13 000

For real text database :

• Construct a good classifier if the labeled data is available ;

 \Rightarrow Power many use cases

 Compared to passive learning, active sampling can construct a more highly-accurate classifier;

 \Rightarrow Reduce the cost of annotation (here at least 4 times)

In this context : the mini-batch size can vary between 1 and 2000.

 \Rightarrow Speed up the annotation process

References

- 1 Steve Hanneke, "Theory of Active Learning", 2014
- 2 Naoki Abe and Hiroshi Mamitsuka "Query Learning Strategies using Boosting and Bagging", 1998
- 3 D. Lewis and W. Gale, "A sequential algorithm for training text classifiers", ACM SIGIR Conference on Research and Development in Information Retrieval, 1994.
- 4 McCallum and K. Nigam. "Employing EM in pool-based active learning for text classification". ICML Conference, 1998
- **5** Settles and M. Craven. "An analysis of active learning strategies for sequence labeling tasks". EMNLP Conference, 2008.
- 6 Mikolov et al., "Distributed Representations ofWords and Phrases and their Compositionality", Neural information processing systems, 2013
- 7 Burr Settles, "Survey of Active Learning", 2012

< ロ > < 同 > < 回 > < 回 >