Efficient labeling with Active Learning

Francois HU
ENSAE - Société Générale Insurance

Joint work with Caroline HILLAIRET (CREST-ENSAE), Marc JUILLARD (Société
Générale Insurance) and Romuald ELIE (CREST-ENSAE)

Online International Conference in Actuarial Science, Data Science and
Finance (OICA), 2020

April 28, 2020

Frangois HU Efficient labeling with Active Learning



Summary

Context

m Motivating application
m Notation

m Intuition

Active learning

m Uncertainty-based active learning
m Disagreement-based active learning
m More algorithms

Experimentations

m Data

m Active learning

m Mini-batch active learning

Frangois HU Efficient labeling with Active Learning



Context Motivating application
Notation
Intuition

Motivating application

m Insurance organisations store voluminous textual data on a daily basis :
m free text areas used by call center agents,
m e-mails,
m customer reviews,...
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Motivating application

m Insurance organisations store voluminous textual data on a daily basis :
m free text areas used by call center agents,
m e-mails,
m customer reviews,...

m These textual data are valuable and can be used in many use cases ...
m optimize business processes,
m analyze customer expectations and opinions,
m control compliance (GDPR type) and fight against fraud, ...
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Motivating application

m Insurance organisations store voluminous textual data on a daily basis :

m free text areas used by call center agents,
m e-mails,
m customer reviews,...

m These textual data are valuable and can be used in many use cases ...

m optimize business processes,
m analyze customer expectations and opinions,
m control compliance (GDPR type) and fight against fraud, ...

m ... however

m it is impossible for human experts to analyse all these quantities,
m and the data usually comes unlabelled
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Motivating application

m Insurance organisations store voluminous textual data on a daily basis :

m free text areas used by call center agents,
m e-mails,
m customer reviews,...

m These textual data are valuable and can be used in many use cases ...

m optimize business processes,
m analyze customer expectations and opinions,
m control compliance (GDPR type) and fight against fraud, ...

m ... however

m it is impossible for human experts to analyse all these quantities,
m and the data usually comes unlabelled

Solution : exploit this large pool of unlabelled data with Active Learning
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Context Motivating application
Notation
Intuition

Notation and goal

Notations :

m let X be the instance space, ) the label space and H : X — ) a class of
hypotheses with finite VC dimension d

m let P be the distribution over X x ) and Py the marginal of P over X. In

practice instead of P we have a pool of unlabeled data ¢/ = (x("**")¥ |

Frangois HU Efficient labeling with Active Learning
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Notation
Intuition

Notation and goal

Notations :

m let X be the instance space, ) the label space and H : X — ) a class of
hypotheses with finite VC dimension d

m let P be the distribution over X x ) and Py the marginal of P over X. In
( (POO/))U

practice instead of Py we have a pool of unlabeled data U/ = (x; i1

Goal : label a sub-sample of U/ in order to construct an optimal training set
(tram (train)\y L
L={0;""y iz

i

1 for our learning algorithm A (which give us he H)
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Notation
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Notation and goal

Notations :

m let X be the instance space, ) the label space and H : X — ) a class of
hypotheses with finite VC dimension d

m let P be the distribution over X x ) and Py the marginal of P over X. In
practice instead of P we have a pool of unlabeled data ¢/ = (x("**")¥ |
Goal : label a sub-sample of U in order to construct an optimal training set
L= {(x (train) y,-(t’a'")) L for our learning algorithm A (which give us h € H)
For any h € H, define :
m Risk : R(h) = P(h(x) # y)

m Empirical risk : Ri(x )y, () = 230 1(h(x) # i)
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Notation
Intuition

Notation and goal

Notations :

m let X be the instance space, ) the label space and H : X — ) a class of
hypotheses with finite VC dimension d

m let P be the distribution over X x ) and Py the marginal of P over X. In

practice instead of P we have a pool of unlabeled data ¢/ = (x("**")¥ |
Goal : label a sub-sample of U in order to construct an optimal training set
L= {(x (train) y,-(t’a'")) L for our learning algorithm A (which give us h € H)
For any h € H, define :

m Risk : R(h) = P(h(x) # y)

m Empirical risk : Ry(x, )} n ()= £, 1(h(x) # i)

Given a holdout set (or test set) T = {(xl-(teSt) y,-(teSt)) I, our aim is to produce

A

i
a highly-accurate classifier (i.e. minimize R (h) ) using as few labels as possible.
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Context Motivating application
Notation
Intuition

Passive Learning : a naive solution

Passive Learning : sample x,.(t'a'.")7 . ,xfm"") i.i.d ~ Px then request their label

training

= i

Unlabelled data

Labeled data

adding sampling / labeling

linear classifier

Oracle

-4 -2 0 2 4
Figure: Conventional passive learning
Figure: an illustration of passive learning
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Context Motivating application
Notation
Intuition

Active Learning : a better solution

Active Learning : Let a learning algorithm sequentially requests the labels of I/

Labeled data NG Y Unlabelled data

adding labeling

linear classifier

Oracle

-4 -2 0 2 4
Figure: Conventional active learning
Figure: an illustration of active learning
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Context

Motivating application
Notation
Intuition

Active Learning : a better solution

Efrar rate

training size|

Frangois HU

[Hanneke, 14] : Let h* the optimal
Bayes classifer and

e = R(h) — R(h*)

Then under a given hypothesis (bounded
noise) and active learning algorithm (A?)

m passive learning :

€~ —

]

m active learning :

n
€~ exp <7con5tant~ 9)
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Active learning

Active learning
m Uncertainty-based active learning
m Disagreement-based active learning
m More algorithms
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Uncertainty-based active learning
Active learning Disagreement-based active learning
More algorithms

Uncertainty Sampling

Uncertainty Sampling : label the instances for which the current model is least
certain as to what the correct output should be.

Example : for binary classification, label the instances whose posterior probability
of being positive is nearest 0.5 :

x{train) — arg min {|P(y = 1|x) — 0.5/}
xeU
Entropy-based active learning [Lewis and Gale, 94] :

X,(.frain) = arg Teazf,( — Z P(y|X) Iog P(Y‘X)
yey
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Uncertainty-based active learning
Active learning reement-based active learning
More algorithms

Uncertainty Sampling

X — arg max Z P(y|x)log P(y|x)

yey
«\Q\e entropy score : 0.89 entropy score : 1.39
=
oo
07 07
06 06
x 05 x 05
> >
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y=1 y=2 y=3 y=4
labels labels

Figure: Entropy score for two instances : x (left) and x’ (right)
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Uncertainty-based active learning
Active learning Disagreement-based active learning
More algorithms

Query By Committee

Query By Committee (QBC): construct a committee of models
C = {h1,..., hy} trained on the current labeled data £. Here, the most
informative query is the instance about which the "committee" disagrees the most
m The committee C = {hy,..., hy}:
Query by bagging (Qbag) [Abe and Mamitsuka, 98] : Bootstrap N times L
then train a learning algorithm on each bootstrapped data
m Measure of disagreement :
Average Kullback Leibler divergence [MacCallum and Nigam, 98] :

N
train 1
Xi(<La ) = arg C(nealx)l({N Zl D(Pi,i|Pcommittee)}
i=

where

Py, (y1x)
m D(P;” Peommittee) = 3 va,-(y‘x) lOg{Wi(yM} and
yey

L Pcommitttee()/‘x) = % Zi Pfyi(y|x)
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Uncertainty-based active learning
Active learning Disagreement-based active learning
More algorithms

Query By Committee

N
rain 1
X!(<tL ) = arg maz/){( N Z D(Pi,iHPcommittee)

i=1
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Uncertainty-based active learning
Active learning Disagreement-based active learning
More algorithms

Other types of Active Learning

m Another disagreement-based active learning : Agnostic Active Learning
(A?) [Hanneke, 14]

m Expected Model Change : Sample instances that would impact the
greatest change to the current model if we knew its label (example :
"expected gradient length" (EGL) [Settles et al, 08])

m Expected Error Reduction : Sample instances that would make its
generalization error likely to be reduced

m Density Weighted Sampling [Settles and Craven, 08] :

B8
i 1 .
Xionety = AEMAXA G (x) X (U S 51m(x,x’)>

x'eu

with ¢4 a measure of informativeness of x according to some sampling
strategy A (uncertainty sampling, QBC, ...)
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Data
Active learning
Experimentations Mini-batch active learning

Experimentations

Experimentations
m Data
m Active learning
m Mini-batch active learning
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Data
Active learning
Experimentations Mini-batch active learning

Text data : Net Promoter Score (NPS)

About the data : Net Promoter Score

Score : the client’s score of an insurance product (score between 0 and 10)

Verbatim : explanation (in french) of the score by the client

Encoding the text data : word2vec [Mikolov 2013]
Sentiment analysis : Y = {0,1} = {score < 6, score > 6}
Mini-batch sampling algorithm : until we reach a stopping criterion,

train our model h on the training set £

(train) train

select the k most informative samples x , ..,x( ) from the pool set U
1 K

U—U— A Y and £ oo ) k(e
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Data
Active learning
Experimentations Mini-batch active learning

Passive Learning

k=100, model : GbmModel

5000 10000

training

m Learning model : XGBoost
m Sampling strategy : random sampling
m Initial training size / mini batch size : 200 / 100

Stopping criterion : 25 000
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Data
Active learning
Experimentations Mini-batch active learning

Active Learning

k=200, model : GbmModel

1000
training siz

m Learning model : XGBoost

m Sampling strategy : random sampling

m uncertainty-based sampling (Entropy, Margin)
m disagreement-based sampling (Qbag)
m density-based sampling (DensityWeighted)

m Initial training size / mini batch size : 800 / 200
m Stopping criterion : 6 000
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Data
Active learning
Experimentations Mini-batch active learning

Mini-batch active learning

GbmModel

Learning model : XGBoost

Sampling strategy :

m random sampling
m entropy sampling

m Initial training size / mini batch
size : 800 / (50, 100, 200)

Stopping criterion : 6 000
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Data
Active learning
Experimentations Mini-batch active learning

Mini-batch active learning

GbmModel

m Learning model : XGBoost

m Sampling strategy : entropy
sampling

pawrlll = Initial training size / mini batch
- size : 1000 / (200, 2000)

m Stopping criterion : 13 000

10000
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Conclusion

For real text database :

m Construct a good classifier if the labeled data is available ;
‘ = Power many use cases ‘

m Compared to passive learning, active sampling can construct a more
highly-accurate classifier ;

‘ = Reduce the cost of annotation (here at least 4 times) ‘

m In this context : the mini-batch size can vary between 1 and 2000.
‘ = Speed up the annotation process‘
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