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Multi-task Learning

Multi-Task Learning

Suppose that you have a small data set, but for a related problem you have much
more data at hand. Multi-task learning (MTL) can help exploit these similarities.
Examples: self-driving car, facial recognition, ...

Data: (feature︸ ︷︷ ︸
X

, sensitive attribute︸ ︷︷ ︸
S

, tasks︸ ︷︷ ︸
Y

) ∼ P on X × S × Y ⊂ Rd × {−1, 1} × R2

S

X d

X 1

... ...

hθ(X ,S)

...

g2(X ,S)

...

...

g1(X ,S)

(X ,S) ft ◦ hθ(X ,S)
Input layer Hidden layer Output layer

Fairness challenge: Achieving fairness in one task does not necessarily extend
fairness to others, despite equal representation −→ Surprisingly, limited research
on fairness in MTL.
Objective: Leverage optimal transport theory to ensure fairness in MTL settings
while minimizing the impact on predictive performance.
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Risk and unfairness measure

Risk and unfairness measure

A predictor gt : X × S → Yt ⊂ R is called fair under Demographic Parity if

sup
u∈Yt

| P(gt (X ,S) ≤ u | S = 1)︸ ︷︷ ︸
Fgt |1(u)

−P(gt (X ,S) ≤ u | S = −1)︸ ︷︷ ︸
Fgt |−1(u)

| = 0 .

The unfairness and the (squared) risk of gt are resp. quantified by

U(gt ) := sup
u∈Yt

∣∣ Fgt |1(u)− Fgt |−1(u)
∣∣

and R(gt ) := E
[
(Yt − gt (X ,S))2

]
.

" In MTL setting g = (g1, g2),

with weight λ = (λ1, λ2),

R

λ

(g) := E

∑
t=1,2

λt ·

(Yt − gt (X ,S))2

 with gt (X ,S) := ft ◦ θ(X ,S) .

Goal: Minimise risk measure under DP-fairness constraint

min
g1 and g2 DP-fair

R

λ

(g) (objective)
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Background on Wasserstein Barycenters

Background on Wasserstein Barycenters

We consider two probability measures, ν1 and ν2. We define distance function between ν1 and ν2:

Definition (Wasserstein distance)

The squared Wasserstein distance between ν1 and ν2 is defined as

W2
2 (ν1, ν2) = inf

π∈Π(ν1,ν2)
E(Z1,Z2)∼π (Z2 − Z1)

2
,

where Π(ν1, ν2) is the set of distributions on Y × Y having ν1 and ν2 as marginals.

The Wasserstein barycenter finds a representative distribution that lies between multiple given
distributions in the Wasserstein space. It is defined for a family of K measures (ν1, . . . , νK ) in V and
some positive weights (w1, . . . , wK ) ∈ RK

+.

Definition (Wasserstein Barycenters)

The Wasserstein barycenter, denoted as Bar
{
(wk , νk )

K
k=1

}
is the minimiser

Bar(wk , νk )
K
k=1 = argmin

ν

K∑
k=1

wk · W2
2 (νk , ν) .

The barycenter exists and is unique if one of νk admits a density wrt the Lebesgue measure [AC11].
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Main results

Optimal prediction under DP

g∗
t,λ: optimal predictor without fairness constr. g∗(fair)

t,λ : optimal predictor with fairness constr.

Continuity assumpt. For any (s, t,λ) ∈ S × T × Λ, assume that νg∗t,λ|s has a density function.

This is equivalent to assuming that the mapping u 7→ Fg∗t,λ|s(u) is continuous.

Theorem (Optimal fair predictions, adapted from [CDH+20, GLR20])

Assuming continuity. Let πs := P(S = s). Then,

1 A representation function θ
∗(fair)
λ satisfies (objective), iff, for each task t,

ν
ft◦θ

∗(fair)
λ

= Bar(πs, νg∗t,λ|s)s∈S = argmin
ν

∑
s∈S

πsW2
2 (νg∗t,λ|s, ν) .

2 Additionally, the optimal fair predictor g∗(fair)
t,λ (·) = ft ◦ θ

∗(fair)
λ (·) can be rewritten as

g∗(fair)
t,λ (x, s) =

∑
s′∈S

πs′Qg∗t,λ|s′ ◦ Fg∗t,λ|s

(
g∗

t,λ(x, s)
)

, (x, s) ∈ X × S .
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Plug-in estimator

Post-processing estimator

Theoretical fair solution:

g∗(fair)
t,λ (x, s) =

∑
s′∈S

πs′Qg∗t,λ|s′ ◦ Fg∗t,λ|s

(
g∗

t,λ(x, s)
)
, (x, s) ∈ X × S .

Empirical fair solution

Plug-in: Estimation based on independent samples of (X , S, Y1, Y2).

Labeled data: Dtrain
n = {(X i , Si , Yi,1, Yi,2)}n

i=1. ζi,t uniform perturbation on [0, u]
train estimators ĝ1,λ and ĝ2,λ. Continuity assumption satisfied if

ḡt,λ(X i , Si , ζi,t ) = ĝt,λ(X i , Si ) + ζi,t .

Unlabeled data: Dpool
N = {(X i , Si )}N

i=1, N i.i.d. copies of (X , S).
emp. frequencies (π̂s)s∈S , CDF F̂ḡt,λ|s and quantile function Q̂ḡt,λ|s via ḡt and Dpool

N .

(Randomised) fair estimator:

ĝ(fair)
t,λ (x, s) =

∑
s′∈S

π̂s′ Q̂ḡt,λ|s′ ◦ F̂ḡt,λ|s (ḡt,λ(x, s, ζt )) , (x, s) ∈ X × S .
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FOLKTABLES data

FOLKTABLES data

Data: The FOLKTABLES dataset [DHMS21] comprises various binary prediction
tasks derived from a substantial US Census data corpus encompassing income,
employment, health, transportation, and housing (58,650 observations).
Tasks: Mobility (Binary) and Income (Regression) using a feature set of 19
attributes, with gender as the binary sensitive variable.
Empirical MTL: We use the "You Only Train Once" (YOTO) approach of [DD20].
The model is only trained once for different λ values by conditioning the parameters
of the neural network directly on the task weights λ. The idea is that different values
for λ are sampled from a distribution and included directly in the estimation process.

Data

Model MTL MTL, Post-processed STL

Performance Unfairness Performance Unfairness Performance Unfairness

regression - all data 0.548 ± 0.02 0.109 ± 0.01 0.558 ± 0.02 0.018 ± 0.00 0.559 ± 0.02 0.107 ± 0.01

regression - 25% missing 0.558 ± 0.02 0.109 ± 0.02 0.572 ± 0.02 0.018 ± 0.00 0.570 ± 0.02 0.105 ± 0.02

regression - 50% missing 0.577 ± 0.02 0.109 ± 0.02 0.593 ± 0.03 0.018 ± 0.01 0.587 ± 0.02 0.099 ± 0.01

regression - 75% missing 0.612 ± 0.05 0.101 ± 0.02 0.627 ± 0.06 0.019 ± 0.01 0.632 ± 0.04 0.098 ± 0.01

regression - 95% missing 0.678 ± 0.05 0.105 ± 0.02 0.687 ± 0.05 0.018 ± 0.01 0.738 ± 0.06 0.108 ± 0.03

classification - all data 0.576 ± 0.01 0.080 ± 0.03 0.577 ± 0.01 0.018 ± 0.01 0.640 ± 0.03 0.042 ± 0.02

Table 1: Performance and unfairness for MTL and Single Task Learning (STL) models on the FOLKTABLES data. Each
model was also post-processed and evaluated on performance and unfairness.
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COMPAS data

COMPAS data

Data: The COMPAS dataset [LAKM16], used to assess the reoffending likelihood of
criminal defendants, exhibits bias in favor of white defendants. The dataset includes
two classification targets (recidivism and violent recidivism), employing 18
features. We study 6,172 observations with race as the sensitive attribute.
Empirical MTL: YOTO approach [DD20].

Figure 1: Joint distribution for scores under unconstrained and DP-fair regimes. Color indicates the presence of the
sensitive feature. Note that the joint distribution appears more mixed and the marginal distributions overlap
in the DP fair case.
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Conclusion

MTL is gaining popularity but poses fairness challenges.

1 We propose an efficient post-processing method to incorporate fairness into MTL;

2 Extending this approach to domains like computer vision with pre-trained models
(e.g., hθ or θ) warrants further exploration as Transfer-Multitask-Fair learning;

3 Future work could address fairness across multiple tasks simultaneously, but it
may require non-trivial solutions due to quantile estimation reliance.
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Conclusion

Thank you !
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