Introduction O	Quantification of the Bias	Mitigation of the Bias O	Case Study on Motor Insurance	Conclusion 00	References

Mitigating Discrimination in Insurance via Wasserstein Barycenters

Arthur Charpentier ¹, <u>François HU</u>² and Philipp Ratz ¹ ¹ Université du Québec à Montréal ² Université de Montréal

3rd Workshop on Bias and Fairness in AI (BIAS 2023)

September 22, 2023

UQÀM Université du Québec à Montréal

Introduction O	Quantification of the Bias	Mitigation of the Bias O	Case Study on Motor Insurance	Conclusion 00	References
Outline					

1 Introduction

- 2 Quantification of the Bias
- 3 Mitigation of the Bias
- 4 Case Study on Motor Insurance

5 Conclusion

Introduction	Quantification of the Bias	Mitigation of the Bias O	Case Study on Motor Insurance	Conclusion 00	References
Introdu	ction				

Insurance is characterised by the need to segment its customers, or as put by Avraham, "the core of insurance business lies discrimination between risky and non-risky insureds", [Avr17], to ask for an actuarially fair premium.

However, problems arise when these characteristics are strongly linked to sensitive variables, as illustrated in Figure 1, which shows the practice of redlining.

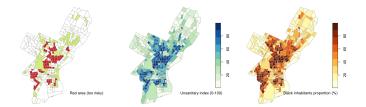


Figure 1: Fictitious maps, (freely) inspired by a Home Owners' Loan Corporation map from 1937.

Left: Locations where investments and **loans** have been discouraged or encouraged. *Middle:* **risk** related variable (fictitious "unsanitary index") per neighborhood.

Right: **sensitive** variable (the proportion of Black people in the neighborhood).

Conclusion

References

Discrimination in Insurance: examples from the US and Canada

	CA	HI	GA	NC	NY	MA	PA	FL	ТΧ	AL	ON	NB	NL	QC
Gender	X	х	•	х	•	х	х	•	•	•	•	х	х	•
Age	x	х	•	x *	•	х	•	•	•	•*	•	x	х	•
Driving experience	•	х	•	•	•	•	•	•	•	•	•	•	•	•
Credit history	x	х	•	•	•	х	•*	•	•	x *	х	•*	х	•
Education	x	х	х	x	x	х	•	•	•	•	•	•	•	•
Profession	x	х	х	•	x	х	•	•	•	•	•	•	•	•
Employment	x	х	х	•	x	х	•	•	•	•	•	•	•	•
Family	•	х	•	•	•	х	•	•	•	•	•	•	•	•
Housing	x	х	•	•	•	х	•	•	•	x	x	•	•	•
Address/ZIP code	•	•	•	•	•	•	•	•	•	x	x	•	•	•

Table 1: A factor is "permitted" (•) if state or provincial laws don't forbid insurers from using it; otherwise, it's "prohibited" (x). * We have given some simplifications. **Source**: in the United States, The Zebra (2022) and in Canada, Insurance Bureau of Canada (2021).

In particular, one of the common goals of Algorithmic Fairness is to make any prediction \hat{Y} independent of a sensible feature *S*.

$\hat{Y} \perp \!\!\!\perp S$

This notion of fairness is called **Demographic Parity (DP)**.

Introduction O	Quantification of the Bias	Mitigation of the Bias O	Case Study on Motor Insurance	Conclusion 00	References

Quantification of Bias

Consider two probability measures, ν_1 and ν_2 . We define distance function between ν_1 and ν_2 :

Definition (Wasserstein distance)

The squared Wasserstein distance between ν_1 and ν_2 is defined as

$$\mathcal{W}_{2}^{2}(\nu_{1},\nu_{2}) = \inf_{\pi \in \Pi(\nu_{1},\nu_{2})} \mathbb{E}_{(Z_{1},Z_{2}) \sim \pi} (Z_{2} - Z_{1})^{2} \;\;,$$

where $\Pi(\nu_1, \nu_2)$ is the set of distributions on $\mathcal{Y} \times \mathcal{Y}$ having ν_1 and ν_2 as marginals.

The Wasserstein barycenter finds a **representative distribution** that lies between multiple given distributions in the Wasserstein space. It is defined for a family of *K* measures (ν_1, \ldots, ν_K) in \mathcal{V} and some positive weights $(w_1, \ldots, w_K) \in \mathbb{R}_+^K$.

Definition (Wasserstein Barycenters)

The Wasserstein barycenter, denoted as $Bar\left\{(w_k, \nu_k)_{k=1}^K\right\}$ is the minimiser

$$\operatorname{Bar}(\boldsymbol{w}_{k},\boldsymbol{\nu}_{k})_{k=1}^{K} = \operatorname{argmin}_{\boldsymbol{\nu}} \sum_{k=1}^{K} \boldsymbol{w}_{k} \cdot \boldsymbol{\mathcal{W}}_{2}^{2}(\boldsymbol{\nu}_{k},\boldsymbol{\nu}) \quad .$$

The barycenter exists and is unique if one of ν_k admits a density wrt the Lebesgue measure [AC11].

Introduction O	Quantification of the Bias	Mitigation of the Bias	Case Study on Motor Insurance	Conclusion 00	References
Mitigati	on of the Bias				

To provide mitigation, we make use of the Wasserstein Barycenter.

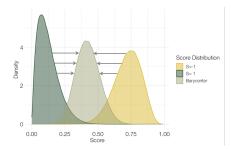


Figure 2: Two distributions, induced by differences in the sensitive value s and their Barycenter.

The Wasserstein Barycenter minimises the Risk under DP-fairness constraint. We use a model-agnostic, closed form solution to obtain our Barycenters [HRC23].

Introduction O	Quantification of the Bias	Mitigation of the Bias O	Case Study on Motor Insurance ●O	Conclusion OO	References

Case Study on Motor Insurance: Gender-free prediction

- **Data:** Publicly available data set from **motor insurance**.
- **Task:** Gender-free prediction.

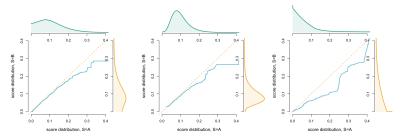


Figure 3: Matching btw $m(\mathbf{x}, \mathbf{s} = A)$ and $m(\mathbf{x}, \mathbf{s} = B)$, where *m* is (left to right) GLM, GBM and RF.

Introduction O	Quantification of the Bias	Mitigation of the Bias O	Case Study on Motor Insurance ○●	Conclusion 00	References

Gender-free prediction

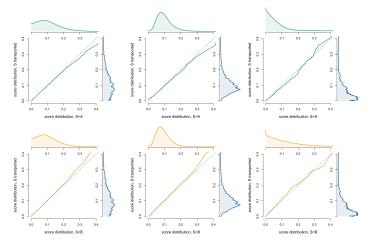


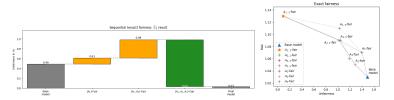
Figure 4: Matching between $m(\mathbf{x}, \mathbf{s} = A)$ and $m^{\star}(\mathbf{x}, \mathbf{s} = A)$, on top, and between $m(\mathbf{x}, \mathbf{s} = B)$ and $m^{\star}(\mathbf{x}, \mathbf{s} = B)$, below, on the probability to claim a loss when *s* is the gender of the driver.

Introduction O	Quantification of the Bias	Mitigation of the Bias O	Case Study on Motor Insurance	Conclusion ●O	References
Conclus	ion				

- Discrimination emerges in risk prediction models tied to sensitive attributes.
- Wasserstein distance and optimal transport enable fair predictions by assessing complete prediction distributions.
- **B** Empirical results affirm the approach's value in **fostering fairness in insurance**.

Extension: Leverage optimal transport theory to address multiple sensitive features.

See our recent paper: "Sequentially Fair Mechanism for Multiple Sensitive Attributes"



Introduction O	Quantification of the Bias	Mitigation of the Bias O	Case Study on Motor Insurance	Conclusion O●	References
Conclus	sion				

Thank you !

Introduction O	Quantification of the Bias	Mitigation of the Bias O	Case Study on Motor Insurance	Conclusion 00	References
Referer	nces I				

- [AC11] M. Agueh and G. Carlier. Barycenters in the wasserstein space. *SIAM Journal on Mathematical Analysis*, 43(2):904–924, 2011.
- [Avr17] Ronen Avraham. Discrimination and insurance. In Kasper Lippert-Rasmussen, editor, *Handbook of the Ethics of Discrimination*, pages 335–347. Routledge, 2017.
- [HRC23] François Hu, Philipp Ratz, and Arthur Charpentier. Fairness in multi-task learning via wasserstein barycenters. In Danai Koutra, Claudia Plant, Manuel Gomez Rodriguez, Elena Baralis, and Francesco Bonchi, editors, Machine Learning and Knowledge Discovery in Databases: Research Track, pages 295–312, Cham, 2023. Springer Nature Switzerland.